

October 30, 2023

Town of Millis Conservation Commission 900 Main Street Millis, MA 02054

RE: Notice of Intent

Well #3 Water Treatment Plant PFAS Upgrades

Birch Street, Millis

Dear Commission Members:

The Town of Millis Department of Public Works (DPW) is proposing to demolish existing water infrastructure and construct a new treatment / PFAS plant and associated infrastructure to Well #3 of Birch Street in Millis, MA. The Town of Millis well is currently offline due to the elevated PFAS levels, and requires additional treatment before it can be brought back online. The size and number of the filtration units will require a significant footprint. Adding on to the current building is not feasible, so DPW is proposing to construct a new building on the site.

A Wetland Resource Area protected under the Wetland Protection Act (WPA) (310 CMR 10.0) is located within 100 feet of the proposed limit of work. In accordance with the requirements of the WPA, please find enclosed copies of the Notice of Intent and reduced plan copies (11"x17") of the project site plans for your review.

Federal Emergency Management Agency (FEMA) floodplain mapping for the Town of Millis shows the limits of work within the 100-year floodplain; however proposed activities within this area propose to maintain or lower existing ground surface elevation.

We respectfully request the Commission to schedule a public hearing for the Conservation Commission meeting on November 13, 2023. Please contact the DPW or myself at the below number if you have any questions regarding this project. Thank you for your consideration on this matter.

Respectfully yours,

Tyler Bernier Kleinfelder

cc: James McKay, Millis Department of Public Works

Table of Contents

Notice of Intent Forms

WPA Form 3 – Notice of Intent NOI Wetland Fee Transmittal Form

Notice of Intent Figures

Figure 1 – Tax Parcel Map

Figure 2 – USGS Locus Map

Figure 3 – Aerial Map

Figure 4 – NHESP Map

Figure 5 – Flood Zone Map

Attachment A - NOI Narrative

Attachment B – Abutter Information

Attachment C - Wetland Data Forms

Attachment D - Project Plans

Attachment E – Stormwater Report

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 - Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP:		
MassDEP File Number		
Document Transaction Number		
Millis		
City/Town		

Important:

When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

Note: Before completing this form consult your local Conservation Commission regarding any municipal bylaw or ordinance.

A. General Information

Village Street		Millis	02054				
a. Street Address		b. City/Town	c. Zip Code				
Latitude and Longitude:		42.1690	-71.3400				
_		d. Latitude	e. Longitude				
Map 28		41					
f. Assessors Map/Plat Number		g. Parcel /Lot Numbe	r				
Applicant:	Applicant:						
Jim		McKay					
a. First Name		b. Last Name					
Town of Millis							
c. Organization							
900 Main St							
d. Street Address		B.4.A	00054				
Millis e. City/Town		MA f. State	02054 g. Zip Code				
508-376-7040		1. State	g. Zip Code				
	Fax Number	j. Email Address					
a. First Name		b. Last Name					
a. First Name c. Organization		b. Last Name					
		b. Last Name					
c. Organization		b. Last Name	g. Zip Code				
c. Organization d. Street Address e. City/Town	- ax Number		g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number i.	-ax Number	f. State	g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number i.	-ax Number	f. State	g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any):	=ax Number	f. State j. Email address	g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory	-ax Number	f. State j. Email address Avenia	g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name	Fax Number	f. State j. Email address Avenia	g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name Kleinfelder	Fax Number	f. State j. Email address Avenia	g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name Kleinfelder c. Company 1 Beacon Street	-ax Number	f. State j. Email address Avenia b. Last Name					
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address	Fax Number	f. State j. Email address Avenia	g. Zip Code 02108 g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address Boston	Fax Number	f. State j. Email address Avenia b. Last Name MA f. State	02108 g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address Boston e. City/Town 617 497 7800	Fax Number	f. State j. Email address Avenia b. Last Name	02108 g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address Boston e. City/Town 617 497 7800 h. Phone Number i. I	- ax Number	f. State j. Email address Avenia b. Last Name MA f. State GAvenia@kleinfelder j. Email address	02108 g. Zip Code				
c. Organization d. Street Address e. City/Town h. Phone Number Representative (if any): Gregory a. First Name Kleinfelder c. Company 1 Beacon Street d. Street Address Boston e. City/Town 617 497 7800 h. Phone Number i. I	Fax Number	f. State j. Email address Avenia b. Last Name MA f. State GAvenia@kleinfelder j. Email address ee Transmittal Form):	02108 g. Zip Code				

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 - Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

rovided by MassDEP:			
	MassDEP File Number		
	Document Transaction Number		
	Millis		
	City/Town		

Α.	A. General Information (continued)				
6.	General Project Description:				
	Implementation of PFAS groundwater treatment facility				
7a.	Project Type Checklist: (Limited Project Types see	Sed	cti	on	A. 7b.)
	1. Single Family Home	2.			Residential Subdivision
	3. Commercial/Industrial	4.			Dock/Pier
	5. 🛛 Utilities	6.			Coastal engineering Structure
	7. Agriculture (e.g., cranberries, forestry)	8.			Transportation
	9. Cother				
7b.	Is any portion of the proposed activity eligible to be treated as a limited project (including Ecological Restoration Limited Project) subject to 310 CMR 10.24 (coastal) or 310 CMR 10.53 (inland)?				
	If yes, describe which limite	ed p	ro	jec	and description of limited project types)
	2. Limited Project Type		_		and decomplian or immed project types)
	,	o Ec	0	logi	ical Pasteration Limited Project (210
	If the proposed activity is eligible to be treated as an CMR10.24(8), 310 CMR 10.53(4)), complete and an Project Checklist and Signed Certification.				
8.	Property recorded at the Registry of Deeds for:				
	a. County				cate # (if registered land)
	c. Book		Deed not found, plan 377 of 1973 d. Page Number		
B.	B. Buffer Zone & Resource Area Impacts (temporary & permanent)				
1.	Buffer Zone Only – Check if the project is locate			-	
2	Vegetated Wetland, Inland Bank, or Coastal Re				
2.	✓ Inland Resource Areas (see 310 CMR 10.54-10 Coastal Resource Areas).	J.58	, 1	1 110	ы арріісаме, до то беспон в.э,
	Check all that apply below. Attach narrative and any	y su	pr	oor	ting documentation describing how the

wpaform3.doc • rev. 6/18/2020 Page 2 of 9

project will meet all performance standards for each of the resource areas altered, including

standards requiring consideration of alternative project design or location.

For all projects affecting other Resource Areas, please attach a narrative explaining how the resource area was delineated.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

rovided by MassDEP:			
	MassDEP File Number		
	Document Transaction Number		
	Millis		
	City/Town		

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

Resource Are	<u>ea</u>	Size of Proposed Alteration	Proposed Replacement (if any)
a. 🗌 🛮 Ban	k	1. linear feet	2. linear feet
	dering Vegetated land	1. square feet	2. square feet
	d Under erbodies and	1. square feet	2. square feet
Wat	erways	3. cubic yards dredged	
Resource Are	<u>ea</u>	Size of Proposed Alteration	Proposed Replacement (if any)
d. 🛛 Bord	dering Land	1661	N/A
Sub	ject to Flooding	1. square feet	2. square feet
		0 3. cubic feet of flood storage lost	4. cubic feet replaced
e. 🗌 🛮 Isola	ated Land	Ç	·
Sub	ject to Flooding	1. square feet	
		2. cubic feet of flood storage lost	3. cubic feet replaced
f. Rive	erfront Area	Name of Waterway (if available) - spec	ify coastal or inland
2. Wid	th of Riverfront Area (check one):	
	25 ft Designated De	ensely Developed Areas only	
☐ 100 ft New agricultu		ıral projects only	
200 ft All other projects			
3. Total	area of Riverfront Area	a on the site of the proposed projec	t: square feet
4. Proposed alteration of the R		Riverfront Area:	5425.5 .555
a. total sq	uare feet	b. square feet within 100 ft.	c. square feet between 100 ft. and 200 ft.
5. Has a	n alternatives analysis	s been done and is it attached to thi	s NOI? Yes No
6. Was t	he lot where the activi	ty is proposed created prior to Augu	ust 1, 1996? ☐ Yes ☐ No
3. Coastal F	Resource Areas: (See	310 CMR 10.25-10.35)	

Note: for coastal riverfront areas, please complete Section B.2.f. above.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

rovided by MassDEP:			
	MassDEP File Number		
	Document Transaction Number		
	Millis		
	City/Town		

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

Check all that apply below. Attach narrative and supporting documentation describing how the project will meet all performance standards for each of the resource areas altered, including standards requiring consideration of alternative project design or location.

Online Users:
Include your
document
transaction
number
(provided on your
receipt page)
with all
supplementary
information you
submit to the
Department.

4.

5.

Resou	<u>ırce Area</u>	Size of Proposed Alteration	Proposed Replacement (if any)
а. 🗌	Designated Port Areas	Indicate size under Land U	nder the Ocean, below
b. 🗌	Land Under the Ocean	1. square feet	
		2. cubic yards dredged	
c. 🗌	Barrier Beach	Indicate size under Coastal E	Beaches and/or Coastal Dunes below
d. 🗌	Coastal Beaches	1. square feet	2. cubic yards beach nourishment
е. 🗌	Coastal Dunes	1. square feet	2. cubic yards dune nourishment
		Size of Proposed Alteration	Proposed Replacement (if any)
f g	Coastal Banks Rocky Intertidal	1. linear feet	
э. <u>—</u>	Shores	1. square feet	_
h. 🗌	Salt Marshes	1. square feet	2. sq ft restoration, rehab., creation
i	Land Under Salt Ponds	1. square feet	
_		2. cubic yards dredged	
j. 📙	Land Containing Shellfish	1. square feet	
k. 🗌	Fish Runs		Banks, inland Bank, Land Under the Inder Waterbodies and Waterways,
		1. cubic yards dredged	
I. 🗌	Land Subject to Coastal Storm Flowage	1. square feet	
Restoration/Enhancement If the project is for the purpose of restoring or enhancing a wetland resource area in addition to the square footage that has been entered in Section B.2.b or B.3.h above, please enter the additional amount here.			
a. squar	re feet of BVW	b. square feet	t of Salt Marsh
☐ Pr	oject Involves Stream Cros	ssings	
a. numb	per of new stream crossings	b. number of	replacement stream crossings

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 3 - Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP:		
	MassDEP File Number	
	Document Transaction Number	
	Millis	
	City/Town	

Ĵ.	. Other Applicable Standards and Requirements
	This is a proposal for an Ecological Restoration Limited Project. Skip Section C and complete Appendix A: Ecological Restoration Limited Project Checklists – Required Actions (310 CMR 10.11).
St	reamlined Massachusetts Endangered Species Act/Wetlands Protection Act Review
1.	Is any portion of the proposed project located in Estimated Habitat of Rare Wildlife as indicated on the most recent Estimated Habitat Map of State-Listed Rare Wetland Wildlife published by the Natural Heritage and Endangered Species Program (NHESP)? To view habitat maps, see the <i>Massachusetts Natural Heritage Atlas</i> or go to http://maps.massgis.state.ma.us/PRI EST HAB/viewer.htm.

GIS viewer checked 9/28/23

buffer zone)

a. Yes No

If yes, include proof of mailing or hand delivery of NOI to:

Natural Heritage and Endangered Species Program Division of Fisheries and Wildlife 1 Rabbit Hill Road Westborough, MA 01581

If yes, the project is also subject to Massachusetts Endangered Species Act (MESA) review (321 CMR 10.18). To qualify for a streamlined, 30-day, MESA/Wetlands Protection Act review, please complete Section C.1.c, and include requested materials with this Notice of Intent (NOI); OR complete Section C.2.f, if applicable. If MESA supplemental information is not included with the NOI, by completing Section 1 of this form, the NHESP will require a separate MESA filing which may take up to 90 days to review (unless noted exceptions in Section 2 apply, see below).

	c. Submit Supplemental Information for Endangered Species Review*			
Percentage/acreage of property to be altered:		ıltered:		
		(a) within wetland Resource Area	percentage/acreage	
		(b) outside Resource Area	percentage/acreage	
	2.	Assessor's Map or right-of-way plan of	site	
2.	2. Project plans for entire project site, including wetland resource areas and areas outside of wetlands jurisdiction, showing existing and proposed conditions, existing and proposed tree/vegetation clearing line, and clearly demarcated limits of work **			
	(a)	Project description (including description	on of impacts outside of wetland resource area &	

Photographs representative of the site

wpaform3.doc • rev. 6/18/2020 Page 5 of 9

Some projects not in Estimated Habitat may be located in Priority Habitat, and require NHESP review (see https://www.mass.gov/maendangered-species-act-mesa-regulatory-review).

Priority Habitat includes habitat for state-listed plants and strictly upland species not protected by the Wetlands Protection Act.

^{**} MESA projects may not be segmented (321 CMR 10.16). The applicant must disclose full development plans even if such plans are not required as part of the Notice of Intent process.

3.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP:
MassDEP File Number
Document Transaction Number
Millis
City/Town

C. Other Applicable Standards and Requirements (cont'd)

(c) MESA filing fee (fee information available at https://www.mass.gov/how-to/how-to-file-for-a-mesa-project-review). Make check payable to "Commonwealth of Massachusetts - NHESP" and <i>mail to NHESP</i> at above address					
Projects altering 10 or more acres of land, also sub	mit:				
(d) Vegetation cover type map of site					
(e) Project plans showing Priority & Estima	ated Habitat boundaries				
(f) OR Check One of the Following					
https://www.mass.gov/service-details/e	MESA exemption applies. (See 321 CMR 10.14, exemptions-from-review-for-projectsactivities-in-ent to NHESP if the project is within estimated d 10.59.)				
2. Separate MESA review ongoing.	a. NHESP Tracking # b. Date submitted to NHESP				
 Separate MESA review completed. Include copy of NHESP "no Take" dete Permit with approved plan. 	rmination or valid Conservation & Management				
For coastal projects only, is any portion of the propoline or in a fish run?	osed project located below the mean high water				
a. Not applicable – project is in inland resource	area only b. 🗌 Yes 🔀 No				
If yes, include proof of mailing, hand delivery, or ele	ectronic delivery of NOI to either:				
South Shore - Cohasset to Rhode Island border, and the Cape & Islands:	North Shore - Hull to New Hampshire border:				
Division of Marine Fisheries - Southeast Marine Fisheries Station Attn: Environmental Reviewer 336 South Rodney French Blvd. New Bedford, MA 02744 Email: dmf.envreview-south@mass.gov Division of Marine Fisheries - North Shore Office Attn: Environmental Reviewer 30 Emerson Avenue Gloucester, MA 01930 Email: dmf.envreview-north@mass.gov					
	Also if yes, the project may require a Chapter 91 license. For coastal towns in the Northeast Region, please contact MassDEP's Boston Office. For coastal towns in the Southeast Region, please contact MassDEP's Southeast Regional Office.				
c. Is this an aquaculture project?	d. 🗌 Yes 🛛 No				
If yes, include a copy of the Division of Marine Fish	eries Certification Letter (M.G.L. c. 130, § 57).				

wpaform3.doc • rev. 6/18/2020 Page 6 of 9

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands

WPA Form 3 - Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP:
MassDEP File Number
Document Transaction Number
Millis
City/Town

C. Other Applicable Standards and Requirements (cont'd)

	4.	Is any portion of the proposed project within an Area of Critical Environmental Concern (ACEC)?
Online Users: Include your document transaction number	٦.	
		a. Yes No If yes, provide name of ACEC (see instructions to WPA Form 3 or MassDEP Website for ACEC locations). Note: electronic filers click on Website.
		b. ACEC
(provided on your receipt page) with all	5.	Is any portion of the proposed project within an area designated as an Outstanding Resource Water (ORW) as designated in the Massachusetts Surface Water Quality Standards, 314 CMR 4.00?
supplementary information you		a. 🗌 Yes 🔀 No
submit to the Department.	6.	Is any portion of the site subject to a Wetlands Restriction Order under the Inland Wetlands Restriction Act (M.G.L. c. 131, § 40A) or the Coastal Wetlands Restriction Act (M.G.L. c. 130, § 105)?
		a. 🛛 Yes 🗌 No
	7.	Is this project subject to provisions of the MassDEP Stormwater Management Standards?
		a. Yes. Attach a copy of the Stormwater Report as required by the Stormwater Management Standards per 310 CMR 10.05(6)(k)-(q) and check if:
		1. Applying for Low Impact Development (LID) site design credits (as described in Stormwater Management Handbook Vol. 2, Chapter 3)
		2. A portion of the site constitutes redevelopment
		3. Proprietary BMPs are included in the Stormwater Management System.
		b. No. Check why the project is exempt:
		1. Single-family house
		2. Emergency road repair
		3. Small Residential Subdivision (less than or equal to 4 single-family houses or less than or equal to 4 units in multi-family housing project) with no discharge to Critical Areas.
	D.	Additional Information
		This is a proposal for an Ecological Restoration Limited Project. Skip Section D and complete Appendix A: Ecological Restoration Notice of Intent – Minimum Required Documents (310 CMR 10.12).
		Applicants must include the following with this Notice of Intent (NOI). See instructions for details.
		Online Users: Attach the document transaction number (provided on your receipt page) for any of the following information you submit to the Department.
		1. Substituting USGS or other map of the area (along with a narrative description, if necessary) containing sufficient information for the Conservation Commission and the Department to locate the site. (Electronic filers may omit this item.)

Plans identifying the location of proposed activities (including activities proposed to serve as a Bordering Vegetated Wetland [BVW] replication area or other mitigating measure) relative

to the boundaries of each affected resource area.

2.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands WPA Form 3 - Notice of Intent Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Provided by MassDEP:
MassDEP File Number
Document Transaction Number
2 countries in an outside in that in a
Millis
City/Town

D. Add	itional Information (cont'd)				
3. 🔀	Identify the method for BVW and other re Field Data Form(s), Determination of Ap and attach documentation of the met	plicability, Order of Resource			
4. 🛛	List the titles and dates for all plans and	other materials submitted with	n this NOI.		
Mill	lis, Massachusetts Well 3 Water Treatmei	nt Facility			
a. P	lan Title	·			
	infelder	Gregory Avenia, P.E.			
	repared By	c. Signed and Stamped by			
	27/2023	1"=20'			
d. F	inal Revision Date	e. Scale			
f. Ac	dditional Plan or Document Title		g. Date		
5. 🗌	If there is more than one property owner listed on this form.	, please attach a list of these	property owners not		
6. 🗌	Attach proof of mailing for Natural Herita	ge and Endangered Species	Program, if needed.		
7.	Attach proof of mailing for Massachusett	s Division of Marine Fisheries	s, if needed.		
8. 🔀	Attach NOI Wetland Fee Transmittal For	m			
9. 🛛	Attach Stormwater Report, if needed.				
E. Fees					
1. 🛚	Fee Exempt: No filing fee shall be asses of the Commonwealth, federally recogniz authority, or the Massachusetts Bay Trai	zed Indian tribe housing autho			
	Applicants must submit the following information (in addition to pages 1 and 2 of the NOI Wetland Fee Transmittal Form) to confirm fee payment:				
2. Munici	pal Check Number	3. Check date			
4. State 0	Check Number	5. Check date			
6. Pavor	name on check: First Name	7. Pavor name on check: I	_ast Name		

wpaform3.doc • rev. 6/18/2020 Page 8 of 9

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 3 - Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Pro	ovided by MassDEP:
	MassDEP File Number
	Document Transaction Number
	Millis

City/Town

F. Signatures and Submittal Requirements

I hereby certify under the penalties of perjury that the foregoing Notice of Intent and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made by Certificate of Mailing or in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location.

lang J. Meshy	10/30/2013
1 Signature of Applicant	2. Date
Signature of Property Owner (if different)	4. Date
Gregory Avenia, PE (Kleinfelder)	10/30/2023
5. Signature of Representative (if any)	6. Date

For Conservation Commission:

Two copies of the completed Notice of Intent (Form 3), including supporting plans and documents, two copies of the NOI Wetland Fee Transmittal Form, and the city/town fee payment, to the Conservation Commission by certified mail or hand delivery.

For MassDEP:

One copy of the completed Notice of Intent (Form 3), including supporting plans and documents, one copy of the NOI Wetland Fee Transmittal Form, and a **copy** of the state fee payment to the MassDEP Regional Office (see Instructions) by certified mail or hand delivery.

Other

If the applicant has checked the "yes" box in any part of Section C, Item 3, above, refer to that section and the Instructions for additional submittal requirements.

The original and copies must be sent simultaneously. Failure by the applicant to send copies in a timely manner may result in dismissal of the Notice of Intent.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

A. Applicant Information

NOI Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return

	• •			
1.	Location of Project:			
	Village St		Millis	
	a. Street Address		b. City/Town	
	c. Check number		d. Fee amount	
2.	Applicant Mailing Ad	dress:		
	Jim		McKay	
	a. First Name		b. Last Name	
	Town of Millis			
	c. Organization			
	900 Main Street			
	d. Mailing Address			
	Millis		MA	02054
	e. City/Town		f. State	g. Zip Code
	508-376-7040			
	h. Phone Number	i. Fax Number	j. Email Address	
3.	Property Owner (if d	ifferent):		
	a. First Name		b. Last Name	
	c. Organization			
	d. Mailing Address			
	e. City/Town		f. State	g. Zip Code
	h. Phone Number	i Fax Number	i. Email Address	

To calculate filing fees, refer to the category fee list and examples in the instructions for filling out WPA Form 3 (Notice of Intent).

B. Fees

Fee should be calculated using the following process & worksheet. *Please see Instructions before filling out worksheet.*

Step 1/Type of Activity: Describe each type of activity that will occur in wetland resource area and buffer zone.

Step 2/Number of Activities: Identify the number of each type of activity.

Step 3/Individual Activity Fee: Identify each activity fee from the six project categories listed in the instructions.

Step 4/Subtotal Activity Fee: Multiply the number of activities (identified in Step 2) times the fee per category (identified in Step 3) to reach a subtotal fee amount. Note: If any of these activities are in a Riverfront Area in addition to another Resource Area or the Buffer Zone, the fee per activity should be multiplied by 1.5 and then added to the subtotal amount.

Step 5/Total Project Fee: Determine the total project fee by adding the subtotal amounts from Step 4.

Step 6/Fee Payments: To calculate the state share of the fee, divide the total fee in half and subtract \$12.50. To calculate the city/town share of the fee, divide the total fee in half and add \$12.50.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

NOI Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

В.	Fees (continued)			
	Step 1/Type of Activity	Step 2/Number of Activities	Step 3/Individual Activity Fee	Step 4/Subtotal Activity Fee
-	No fee, Town Project	1	0	0
-				
-		Step 5/To	otal Project Fee	:
		Step 6/	Fee Payments:	
		Total	Project Fee:	\$0 a. Total Fee from Step 5
		State share	of filing Fee:	\$0 b. 1/2 Total Fee less \$12.50
		City/Town share	e of filling Fee:	\$0 c. 1/2 Total Fee plus \$12.50

C. Submittal Requirements

a.) Complete pages 1 and 2 and send with a check or money order for the state share of the fee, payable to the Commonwealth of Massachusetts.

Department of Environmental Protection Box 4062 Boston, MA 02211

b.) **To the Conservation Commission:** Send the Notice of Intent or Abbreviated Notice of Intent; a **copy** of this form; and the city/town fee payment.

To MassDEP Regional Office (see Instructions): Send a copy of the Notice of Intent or Abbreviated Notice of Intent; a **copy** of this form; and a **copy** of the state fee payment. (E-filers of Notices of Intent may submit these electronically.)

W S

Village Street Property Map

Millis, MA

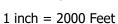
1 inch = 300 Feet

www.cai-tech.com

October 27, 2023 0 300 600 900

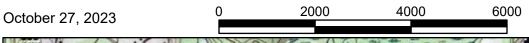
Water-poly Right of Way Property Hook Private Road

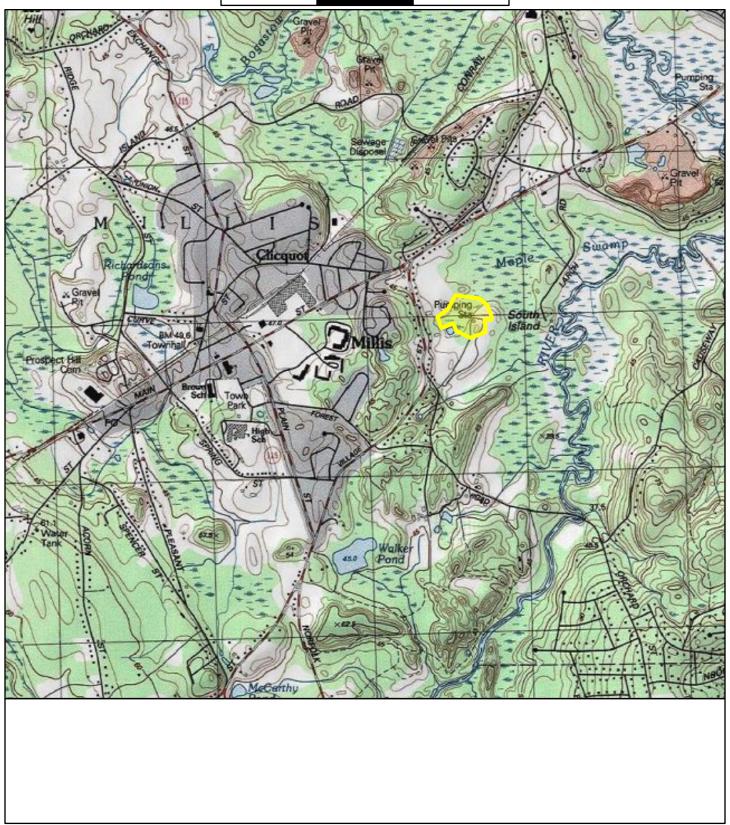
Wet Areas Utility Right of Way Property Line


WaterLines PropNotPar Wetland Public Road

Data shown on this map is provided for planning and informational purposes only. The municipality and CAI Technologies are not responsible for any use for other purposes or misuse or misrepresentation of this map.

W S

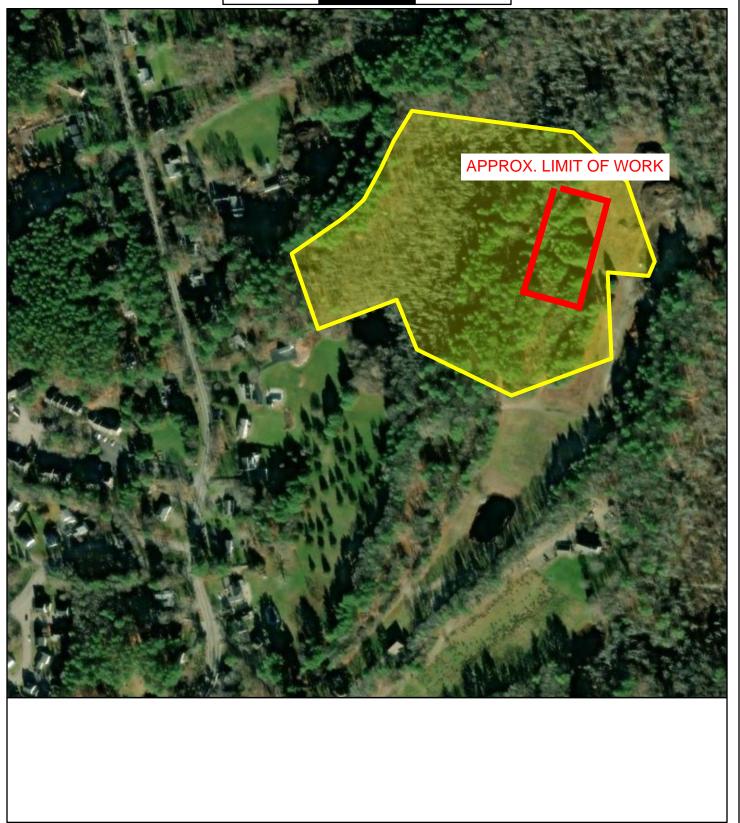

Village Street USGS Map


Millis, MA

www.cai-tech.com

October 27, 2023

Village Street Aerial Map


Millis, MA

1 inch = 300 Feet

www.cai-tech.com

0 300 600 900

W N

Village Street NHESP Map

Millis, MA

1 inch = 300 Feet

www.cai-tech.com

Water-poly	Right of Way	Property Hook	Private Road
	Utility	Right of Way	Property Line
WaterLines	PropNotPar	Wetland	Public Road

Village Street Flood Map CAI Technologies Millis, MA 1 inch = 300 Feetwww.cai-tech.com 300 900 600 October 27, 2023 APPROX. LIMIT OF WORK Wetland 1% Annual Chance Flood Hazard Right of Way 0.2% Annual Chance Flood Hazard Utility Private Road PropNotPar Water-poly Property Line Wet Areas Property Hook Public Road

Right of Way

Data shown on this map is provided for planning and informational purposes only. The municipality and CAI Technologies are not responsible for any use for other purposes or misuse or misrepresentation of this map.

WaterLines

ATTACHMENT A NOI Narrative

Attachment A – Notice of Intent Narrative

This Notice of Intent (NOI) is filed pursuant to the Massachusetts Wetlands Protection Act (WPA) (MGL Chapter 131, Section 40) and its implementing regulations (310 CMR 10.00). This narrative presents wetland resource areas associated with the Project area, a description of the proposed work, proposed mitigation measures, and how the Project meets the performance standards of the WPA regulations. Refer to the accompanying Project plans included as Attachment D for a plan layout and details of the Project components.

Introduction

The Town of Millis (Millis) operates a water system with six overburden groundwater wells and four treatment plants, serving approximately 8,600 residential customers. The Massachusetts Department of Environmental Protection (MassDEP) recently adopted a drinking water standard limiting six per- and polyfluoroalkyl substances (PFAS) levels to no more than 20 nanograms per liter (ng/L), and as part of the new drinking water regulations, all public water systems are required to sample for PFAS levels.

Since the discovery of PFAS in Millis' water supply, the Town has worked to improve water quality through the design and construction of the PFAS treatment upgrades at the D'Angelis Water Treatment Facility (WTF). However, the remaining Wells 3 through 6 also have PFAS detections for compounds subject to regulations from Massachusetts Department of Environmental Protection (DEP) and some of which may also be subject to the proposed regulations by United States Environmental Protection Agency (EPA). While the new D'Angelis WTF will be capable of meeting average daily demands on its own, the Town must install additional PFAS treatment to meet peak demands.

The Town of Millis Department of Public Works (DPW) has conducted pilot testing and a thorough site investigation to obtain the most effective treatment for removing PFAS from drinking water with the least environmental impact. The DPW proposes to construct a new building housing granular activated carbon (GAC) filters, chemical feed equipment, and associated infrastructure at the existing Well 3 site for treatment of public drinking water.

Portions of the land near the Project area contain Bordering Vegetated Wetlands (BVW), a resource area subject to the jurisdiction of the WPA. Proposed work for the Project will occur only in the 100-foot Buffer Zone of the BVW. The Project meets or exceeds all performance standards for Buffer Zone under the WPA. Portions of the Project area are also shown on the Flood Insurance Rate Map (FIRM) as located within Zone AE (100-year floodplain, regulated as Bordering Land Subject to Flooding [BLSF]). However, within the Project area, base flood elevation (BFE) is mapped as 123 feet NAVD88 and recently the DPW obtained survey information collect by a Professional Land Surveyor (PLS) registered in the Commonwealth of Massachusetts that shows a small portion of the limit of disturbance for this Project is located within BFE and/or inside of regulated floodplain areas. More information on the position of the project footprint relative to Zone AE is provided below.

Site Description

The Project area is located on one parcel of land off Birch Street in Millis, Massachusetts. The Project area currently contains wooded land and existing water system infrastructure. Wooded area borders the site to the south, the gravel driveway and wetland to the west, existing Well 3 infrastructure to the north, and a grassed field to the east past a loop in the gravel driveway. Refer to Figure 1 for a Tax Parcel map of the Project area, and Figures 2 and 3 for a USGS map and aerial map of the Project area.

According to the most recently available data provided by the Massachusetts Natural Heritage and Endangered Species Program (NHESP), no Priority Habitats for Rare Species or Estimated Habitats for Rare Wildlife have been mapped in the vicinity of the Project area. No certified or potential vernal pools have been mapped in the Project area (Figure 4). The Project Area is not located within or near an Area of

Critical Environmental Concern (ACEC). According to the Massachusetts Department of Environmental Protection (DEP), the Project area is not located within an Outstanding Resource Water area, but it designated as a Zone I and Zone II Wellhead Protection Area. According to the Natural Resources Conservation Service (NRCS) soil survey, soils in the Project area are mapped as Swansea and Hinkley.

Wetland Resource Areas

Wetland Resource areas in or near the Project Area were identified and delineated by environmental scientists from Basbanes Wetland Consulting on July 19, 2023, in accordance with methods developed by the DEP and U.S. Army Corps of Engineers. Resource areas are shown on the accompanying Project plans and wetland data forms are included in Attachment C. One BVW was delineated in the Project Area, as was Land Subject to Flooding. BVW is defined under the WPA Regulations (310 CMR 10.00) as: "freshwater wetlands that border on creeks, rivers, streams, ponds, and lakes." The boundary of a BVW is determined by the presence of 50 percent or more of wetland indicator plants and saturated or inundated conditions. Bordering Land Subject to Flooding is defined under the WPA Regulations (310 CMR 10.00) as: "an area which floods from a rise in a bordering waterway or water body. Such areas are likely to be significant to flood control and storm damage prevention."

The delineated wetland is located west of the Project Area. Dominant vegetation within the wetland includes beech, maple, oak, pine, buckthorn, highbush and lowbush blueberry, Canada mayflower, fern cinnamon, fern wood, partridgeberry, sphagnum moss, starflower, and poison ivy. The wetland was delineated with flags 1A through 23A (See Project plans). The wetland is regulated as BVW under the WPA.

A 100-foot Buffer Zone extends horizontally outward from the BVW boundary described above, as defined in 310 CMR 10.02(2)(b). The Buffer Zone is not considered a resource area under the WPA, but areas within the Buffer Zone are under the jurisdiction of the issuing authority. Millis has an additional wetlands protection bylaw preventing structures within the inner 50-foot Buffer Zone from the edge of a wetland resource. Within the Project area, the Buffer Zone of the wetland contains and existing gravel drive, paved parking, existing infrastructure, and proposed utilities.

The FIRM for the area indicates a portion of the Project is within as within Zone AE, regulated as BLSF, with an elevation of 123 feet NAVD88. A civil survey conducted within the Project area in September 2022 and July 2023 shows that all Project impacts occur outside of this area, except for demolition activities associated with the existing chemical feed building that proposed to maintain or lower existing grades. Proposed demolition activities are encompass 1,661 square feet of Bordering Land Subject to Flooding. The project is subject to regulation under the WPA.

Proposed Activities

The project includes installation of four (4) 10,000 lb. GAC filters at the Well 3 site, which will require additional building footprint to accommodate the infrastructure. The DPW proposes to construct a new building on the site, adjacent to existing Well 3 infrastructure. A small existing chemical treatment building on the parcel will be demolished and the new building housing the PFAS treatment system and chemicals will be built nearby, on land outside the 100-year floodplain. The existing gravel access road leading to the new building will be reconstructed to provide safe access for vehicles and maintenance personnel. The proposed building footprint is located outside the 100-foot Buffer Zone of a BVW, however portions of construction activities are located within the Millis 100-foot and 50-foot Buffer Zones.

Activities Within Buffer Zone

Project work within the Buffer Zone will include demolition of an existing water infrastructure building, as well as reconstruction of existing gravel driveway areas, installation of new paved driveways, and installation of a new building with associated parking and utilities. All work will take place outside of the

BVW, but demolition of the chemical feed building, restoration of the gravel access drive, and installing pavement, will be within the 100-foot Buffer Zone as shown on the attached plans in Attachment D. Within the area of disturbance associated with the demolition of the chemical feed building, approximately 2,140 square feet of wetland buffer restoration is proposed in a previously developed location.

Sedimentation barriers will be placed around the perimeter of the work area to prevent migration of excavated material from entering the BVW.

Mitigation

The new building has been sited to reduce impacts to wetland resources to the greatest extent practicable by locating it outside of the buffer zone and restoring 2,140 square feet of buffer zone that was previously developed. An erosion and sedimentation control program will be implemented to minimize temporary impacts to wetland resource areas during the construction phase of the project. The program incorporates Best Management Practices (BMPs) specified in guidelines developed by the DEP and the U.S. Environmental Protection Agency (EPA).

Proper implementation of the erosion and sedimentation control program will:

- Minimize exposed soil areas through sequencing and temporary stabilization;
- > Place structures to manage stormwater runoff and erosion; and
- Establish a permanent vegetative cover or other forms of stabilization as soon as practicable.

Non-Structural Practices

Non-structural practices to be used during construction include temporary stabilization, temporary seeding, permanent seeding, pavement sweeping, and dust control. These practices will be initiated as soon as practicable in appropriate areas within the Project Area.

Temporary Stabilization

Any areas of exposed soil or stockpiles that will remain inactive for more than 14 days will be surrounded by erosion control devices and covered with polyurethane sheeting.

Temporary Seeding

If conditions allow, a temporary vegetative cover will be established on areas of exposed soils (including stockpiles) that remain unstabilized for a period of more than 60 days. The seeded surfaces will be covered with a layer of straw mulch or bonded fiber matrix as described above. The seed mix shall include a blend of rapid germinating grasses that are indigenous to eastern Massachusetts.

Permanent Seeding

Upon completion of final grading, any areas not covered by pavement, other forms of stabilization, or other methods of landscaping will be seeded with a native seed mix. The mix will be applied at a rate specified by the manufacturer and will be covered with mulch or bonded fiber matrix as described above.

Pavement Sweeping

The interior roads (once paved) and the portion of the street that fronts the Project Area shall be swept as needed during construction. The sweeping program will remove sediment and other contaminants directly from paved surfaces before their release into stormwater runoff. Pavement sweeping has been demonstrated to be an effective initial treatment for reducing pollutant loading into stormwater. A street sweeper shall be kept at the site or at a nearby location to facilitate this practice. Once construction has been completed, sweeping at the Project Area will occur as required under the Operation and Maintenance Plan.

Dust Control

The erosion and sediment control program includes provisions to minimize the generation of dust during dry and windy conditions. When necessary, larger areas of exposed soil will be wetted to prevent wind borne transport of fine-grained sediment. Enough water shall be applied to wet the upper 0.5 inches of soil. The water will be applied as a fine spray to prevent erosion. A water truck will be kept on the property (or at a nearby location) to facilitate this practice.

Structural Practices

Structural erosion and sedimentation controls to be used on the Project Area include barriers, catch basin inlet protection, and dewatering filters.

Erosion Control Barriers

Prior to any ground disturbance, an approved erosion control barrier will be installed at the downgradient limit of work. As construction progresses, additional barriers will be installed around the base of stockpiles and other erosion prone areas. The barriers will be entrenched into the substrate to prevent underflow.

If sediment has accumulated to a depth which impairs proper functioning of the barrier, it will be removed by hand or by machinery operating upslope of the barriers. This material will be either reused in the Project Area or disposed of at a suitable offsite location. Any damaged sections of the barrier will be repaired or replaced immediately upon discovery.

Dewatering Filters

If necessary, sediment laden water that collects in trenches or excavated areas will be pumped into straw bale basins or filter bags. The basins will consist of a ring of staked straw bales overlain by non-woven geotextile filter fabric and crushed stone. Discharge water will be pumped into the basin and allowed to drain through the fabric onto relatively flat stabilized surfaces. Dewatering filter bags may be used in place of straw bale basins. The bags will be placed on relatively flat terrain, free of brush and stumps, to avoid ruptures and punctures. A maximum of one six-inch discharge hose will be allowed per filter bag. To help prevent punctures, geotextile fabric will be placed beneath the filter bag when used in wooded locations. Unattended filter bags will be encircled with a straw bale and silt fence barrier.

All dewatering structures will be placed as far away from wetland resources as possible. Filter bags used during construction will be bundled and removed for proper disposal.

Stormwater Management

Runoff generated from impervious surfaces will be collected and managed in accordance with the DEP Stormwater policies in significant improvement to existing conditions. The proposed Project will improve existing conditions within the Project Area by constructing a stormwater management system that includes measures to provide groundwater recharge, attenuate peak flows and provide water quality treatment. Full details on the system (including supporting calculations) are included in the accompanying Stormwater Management Report (Attachment E).

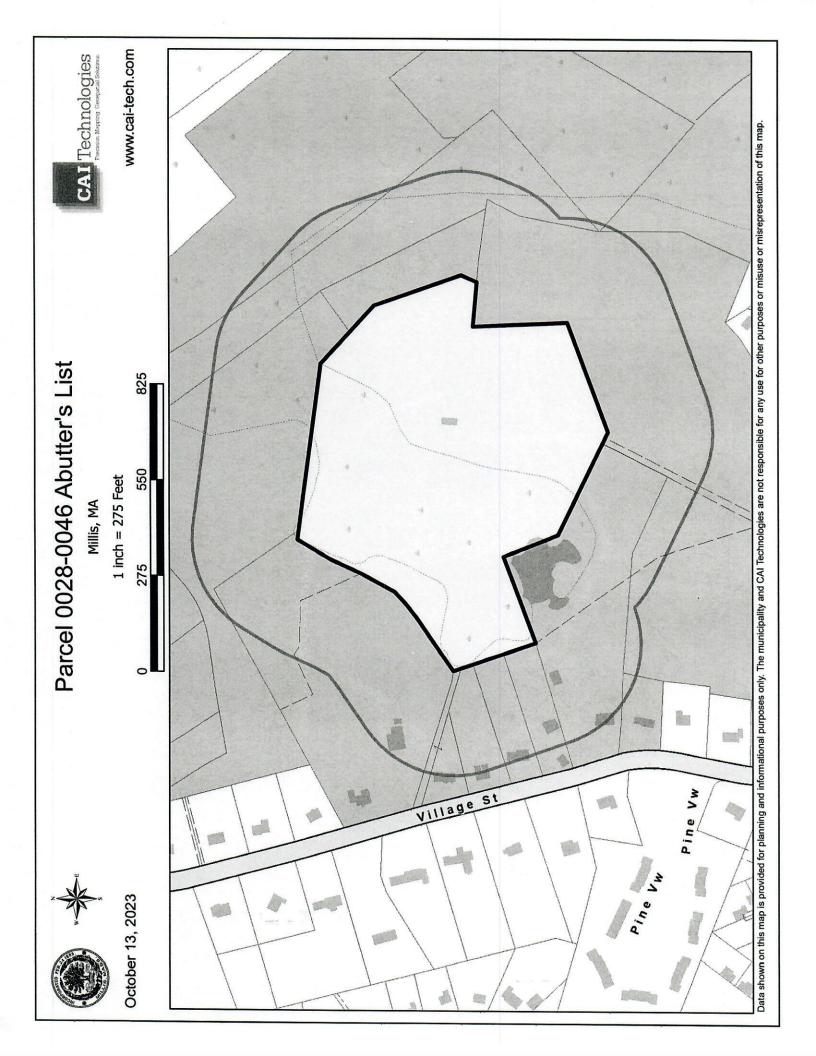
Compliance with the 10 stormwater management standards cited in Section 310 CMR 10.05(6)(k) of the WPA Regulations is evaluated in the Regulatory Compliance section of the Stormwater Management Report.

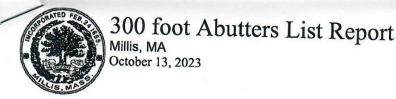
Regulatory Compliance

As demonstrated below, the Project work fully complies with and exceeds applicable performance standards contained in the WPA for work in the 100-foot Buffer Zone to BVW and the Bordering Land Subject to Flooding. Compliance with each of the applicable performance standards is described in more detail below.

The Buffer Zone is not a resource area and, therefore, work within a Buffer Zone is not governed by specific regulatory performance standards. In general, work within a Buffer Zone is permissible when said work

has been designed, or can be conditioned, such that there will be no impact on the downgradient wetland resource area(s) being buffered. As stated in 310 CMR 10.53(1) of the WPA Regulations:


For work in Buffer Zone subject to review under 310 CMR 10.02(2)(b)3., the Issuing Authority shall impose conditions to protect the interests of the Act identified for the adjacent Resource Area... The issuing authority may consider the characteristics of the Buffer Zone, such as the presence of steep slopes, that may increase the potential for adverse impacts on Resource Areas. Conditions may include limitations on the scope and location of work in the Buffer Zone as necessary to avoid alteration of Resource Areas. The Issuing Authority may require erosion and sedimentation controls during construction, a clear limit of work, and the preservation of natural vegetation adjacent to the Resource Area and/or other measures commensurate with the scope and location of work with the Buffer Zone to protect the interests of the Act.


The Project has been designed to address these considerations. Measures have been incorporated into the Project design to ensure that work will be done in a manner that prevents impacts to downgradient wetland resources. A clear limit of work will be identified, and erosion and sedimentation control areas will be installed in the Project Area. Temporary disturbance in vegetated areas of Buffer Zone will be restored in place and seeded with a native seed mix.

The Applicant respectfully requests that the Millis Conservation Commission find these measures adequately protective of the interests identified in the WPA and issue an Order of Conditions approving the work described in this NOI and shown on the accompanying plans.

ATTACHMENT B Abutter Information

CERTIFIED COPY by the TOWN OF MILLIS

Assessors Office Liz Road

Subject Property:

Parcel Number: CAMA Number: 0028-0046-0000

Property Address: VILLAGE ST

0028-0046-0000

Mailing Address:

TOWN OF MILLIS

900 MAIN ST

MILLIS, MA 02054

Abutters:

Parcel Number: CAMA Number: 0025-0088-0000 0025-0088-0000

Property Address:

MAIN ST TRACT 417

Parcel Number: CAMA Number:

0027-0052-0000 0027-0052-000B

Property Address:

30 LARCH RD

Parcel Number: CAMA Number: 0028-0014-0000

Property Address: 34 VILLAGE ST

0028-0014-0000

Parcel Number: CAMA Number:

0028-0015-0000 0028-0015-0000

Property Address: 30 VILLAGE ST

Parcel Number: CAMA Number:

0028-0015-0000 0028-0015-000H Property Address: 30 VILLAGE ST

Parcel Number: CAMA Number:

0028-0016-0000 0028-0016-0000

Property Address: 36 VILLAGE ST

Parcel Number: CAMA Number:

0028-0019-0000

Property Address: 40 VILLAGE ST

0028-0019-0000

Parcel Number:

0028-0020-0000 0028-0020-0000

CAMA Number:

Property Address: 42 VILLAGE ST

Parcel Number:

0025-0088-0000 CAMA Number: 0028-0021-0000 Property Address: MAIN ST TRACT 417

Parcel Number:

0028-0022-0000 0028-0022-0000

CAMA Number: Property Address:

MAIN ST TRACT 412

Mailing Address: U S ARMY CORPS OF ENGINEERS

REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569

Mailing Address: FIN FUR & FEATHER CLUB INC

P O BOX 272 MILLIS, MA 02054

Mailing Address:

LYDIA GEORGE CHRIS TSINIDIS

34 VILLAGE ST MILLIS, MA 02054

Mailing Address:

KERRI A BARRETT THOMAS J BARRETT

30 VILLAGE ST

MILLIS, MA 02054 Mailing Address:

KERRI A BARRETT THOMAS J BARRETT SR.

30 VILLAGE ST MILLIS, MA 02054

Mailing Address:

HAMPTON LYNDA L & SCOTT D

36 VILLAGE ST MILLIS, MA 02054

Mailing Address: NGUYEN BICH-VAN

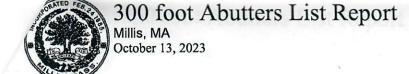
40 VILLAGE ST

MILLIS, MA 02054

Mailing Address: ANTHONY DELGROSSO LATOYA

THOMPSON 42 VILLAGE ST MILLIS, MA 02054

Mailing Address:


U S ARMY CORPS OF ENGINEERS

REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569

Mailing Address: U S ARMY CORPS OF ENGINEERS

REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569

Parcel Number:

0028-0023-0000

CAMA Number:

0028-0023-0000

Property Address: VILLAGE ST TR 428

Parcel Number:

0028-0024-0000

CAMA Number:

0028-0024-0000

Property Address: MAIN ST TRACT 412

Parcel Number: **CAMA Number:** 0028-0025-0000 0028-0025-0000

Property Address: 44 VILLAGE ST

Parcel Number: **CAMA Number:** 0028-0039-0000 0028-0039-0000

Property Address: BIRCH ST

Parcel Number: **CAMA Number:**

0028-0041-0000 0028-0041-0000 Property Address: 68 VILLAGE ST

Parcel Number: **CAMA Number:**

0028-0047-0000 0028-0047-0000 Property Address: 46 VILLAGE ST

Mailing Address:

U S ARMY CORPS OF ENGINEERS

REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569

Mailing Address:

US ARMY CORPS OF ENGINEERS

REAL ESTATE DIVISION 518 HARTFORD AVE E UXBRIDGE, MA 01569

Mailing Address: Contact Town For Info

Mailing Address: WHELAN KENNETH J

27 BIRCH ST MILLIS, MA 02054

Mailing Address:

WHELAN BRENDA J TRUSTEE WHELAN

BRENDA J REALTY TRUST **68 VILLAGE ST**

MILLIS, MA 02054

Mailing Address:

MOGAN JOHN J JR & MARCIA A C/O

MOGAN JOHN J JR **46 VILLAGE ST MILLIS, MA 02054**

ATTACHMENT C Wetland Data Forms

BASBANES WETLAND CONSULTING

39 Hardy St. Dunstable, MA 01827

Delineation Report 21167-1A Millis Well 3 Village St, Millis, MA

July 20 2023

The following is a report on the delineation of the wetland resource areas at the Millis Well 3 off Village St, Millis, MA. The delineation was done on July 19 2923. The jurisdictional wetland resource area present on site may include: 310 CMR 10.55 Bordering Vegetated Wetland and 310 CMR 10.57 Land Subject to Flooding.

Delineation Method

A wetland delineation is done by visual survey of topography, evidence of hydrology, and identification of plant species. A determination is made for each plant species as to their indicator status as referenced in the "National List of Plant Species that Occur in Wetlands", published by the Fish and Wildlife Service. The boundary of the wetland is then determined to be where 50% or more of the vegetation community consists of wetland indicator species with a status of FAC or wetter. Where there is a dominance of wetland plants species, evidence of hydrology is looked for, i.e. water stained leaves, drainage patterns, morphological adaptations, and hydric soils. Typically, hydric soils are determined by digging or augering a pit 20" deep and observing the horizons for color and features. Determinations are made referencing "Field Indicators for Identifying Hydric Soils in New England" and color matched to the Munsell Soil Color Charts.

Flagging Series

The wetland resource area is delineated by the flagging series 1A-23A. The wetland delineated is a bordering vegetated wetland that is part of an extensive wetland system associated with the Charles River. The Charles River is well over 1500 l.f. from the subject property. The wetland boundary is fairly well defined though the area is relatively flat. The transition of wetland plants of hydric to upland plants as well as non-hydric soils to hydric soils is narrow.

Vegetation

The vegetation along the delineated area consists of the following dominant species:

Beech, Fagus grand folia	FACU
Maple, Red <i>Acer rubrum</i>	FAC
Maple, Sugar Acer saccharum	FACU
Oak, Red Quercus rubra	FACU
Pine, White <i>Pinus strobus</i>	FACU
Buckthorn, European Rhamnus frangula	FAC
Highbush Blueberry Vaccinium corymbosum	FACW
Lowbush Blueberry Vaccinium angustifolium	FACU
Canada Mayflower Maianthemum canadense	FACU
Fern Cinnamon Osmunda cinnamomea	FACW
Fern Wood <i>Dryopteris spinulosa</i>	
Partridgeberry Mitchella repens	FACU
Sphagnum moss Sphagnum spp.	OBL
Starflower Trientalis borealis	FAC
Poison Ivy Toxicodendron radicans	FAC

Soils

As referenced to the NRCS Soil Survey, the soils on the subject property are Swansea in the wetland and Hinckley in the upland area. Swansea soils consist of nearly level, deep (5+ ft.), very poorly drained organic soils in depressions and low flat areas of uplands and glacial outwash plains and terraces. Hinckley soils consist of deep, excessively drained soils on terraces, outwash plains, deltas, kames and eskers.

The typical soil profiles observed were:

SP upl	<u>and</u>	<u>SP hydric</u>		
0	<1"	0	<1"	
Α	0" – 8" 10YR 2/2	Α	0" – 10" 10YR 2/1	
В	8"-18" 10YR 4/4	В	10"-18" 10YR 4/2 redox	

Indicators of hydrology

Along with the presence of hydric soil conditions other indicators of hydrology were observed. Those indicators include: water-stained leaves, areas void of vegetation, sphagnum moss.

Rare Species

Under MESA and 310 CMR 10:59 Estimated Habitats of Rare Wildlife, any work proposed, regardless of wetlands, within an Estimated or Priority habitat shall be reviewed by the NHESP as well as the Conservation Commission. The site is not located within an Estimated or Priority Habitat

Vernal Pools

There are no certified vernal pools on the property per the most recently NHESP map.

FEMA

As referenced to the FEMA flood data maps, a portion of the site is located within a regulatory flood zone AE.

If you have any questions please do not hesitate to contact me. Thank you.

Sincerely,

Leah D. Basbanes, M.A. Wetland Consultant/Biologist

Leve D. Brushaver

The wetland resource areas were delineated/reviewed in the keeping with the Massachusetts Wetland Protection Act and were done so to the best of our abilities. Considering all the variables (seasonal growth form of vegetation, soils conditions, topography, weather, etc.) involved in such an effort, please be advised that despite the best effort, no wetland delineation is considered definitive until verified and approved by the final issuing authority.

BORDERING VEGETATED WETLAND DETERMINATION FORM

Project/Site: 21167-1A Millis Well 3	City/Town: Millis	Sampling Date: July 19 2023						
Applicant/Owner: Town of Millis	Sampling	Sampling Point or Zone: non wet SP1						
Investigator(s): Leah Basbanes	Latitude /	Latitude / Longitude: 42.16812, -71.34051						
Soil Map Unit Name: Hinckley	NWI or D	EP Classification: WS1						
Are climatic/hydrologic conditions on the	site typical for this time of year? Yes	No (If no, explain in Remarks)						
Are Vegetation, Soil, or	Hydrology significantly disturbed?	? (If yes, explain in Remarks)						
Are Vegetation, Soil, or	Hydrology naturally problematic?	(If yes, explain in Remarks)						
SUMMARY OF FINDINGS – Attach site map and photograph log showing sampling locations, transects, etc.								
Wetland vegetation criterion met?	Yes No ✓ Is the Samı							
Hydric Soils criterion met?		within a Wetland?						
Wetlands hydrology present?	YesNo							
Remarks, Photo Details, Flagging, etc.:								
HYDROLOGY								
Field Observations:								
Surface Water Present?	Yes No <u>✓</u> De	pth (inches)						
Water Table Present? Yes No ✓ Depth (inches)								
Saturation Present (including capillary fringe)? Yes No Depth (inches)								
Wetland Hydrology Indicators								
Reliable Indicators of Wetlands	Indicators that can be Reliable with	Indicators of the Influence of Water						
Hydrology	Proper Interpretation							
Water-stained leaves	Hydrological records	Direct observation of inundation						
Evidence of aquatic fauna	Free water in a soil test hole	Drainage patterns						
Iron deposits	Saturated soil	Drift lines						
Algal mats or crusts Oxidized rhizospheres/pore	Water marks Scoured areas Moss trim lines Sediment deposits							
linings	I Wioss trim inies	scamene acposits						
Thin muck surfaces	Presence of reduced iron	Surface soil cracks						
Plants with air-filled tissue Woody plants with adventitious Sparsely vegetated concave								
(aerenchyma)	roots	surface						
Plants with polymorphic leaves Plants with floating leaves	Trees with shallow root systems Microtopographic relief							
Hydrogen sulfide odor	Woody plants with enlarged Geographic position (depression, lenticels toe of slope, fringing lowland							
	tream gauge, monitoring well, aerial pho							
nemarks (describe recorded data from s	a cam gaage, monitoring well, acrial pho	tos, previous inspections, it available).						

This form is only for BVW delineations. Other wetland resource areas may be present and should be delineated according to the applicable regulatory provisions.

VEGETATION – Use both common and scientific names of plants.

<u>Tree Stratum</u>	Plot size 30'				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name				(yes/no)
1. Red Oak	Quercus rubra	FACU	30.0	Yes	No
2. White Pine	Pinus strobus	FACU	30.0	Yes	No
3. Red Maple	Acer rubrum	FAC	20.0	Yes	Yes
4. sugar maple	Acer saccharum	FACU	10.0	No	No
5.					
6.					
7.					
8.					
9.					
		<u>90.0</u> = T	otal Cover		
Shrub/Sapling Stratum	Plot size 15'				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name				(yes/no)
1. European Buckthorn	Rhamnus frangula	FAC	40.0	Yes	Yes
2. Lowbush Blueberry	Vaccinium angustifolia	FACU	30.0	Yes	No
3.					
4.					
5.					
6.					
7.					
8.					
9.					
		<u>70.0</u> = T	otal Cover		
Herb Stratum	Plot size 5'				
		Indicator	Absolute	Dominant?	Wetland
		Status	% Cover	(yes/no)	Indictor?
Common name	Scientific name		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(),,	(yes/no)
1. Starflower	Trientalis borealis	FAC	10.0	No	No
2. Partridgeberry	Mitchella repens	FACU	20.0	Yes	No
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					
11.					
12.					
		<u>30.0</u> = T	otal Cover		

VEGETATION – continued.

Woody Vine Stratum	Plot size					
			Indicator Status	Absolute % Cover	Dominant? (yes/no)	Wetland Indictor?
Common name	Scientific name					(yes/no)
1.						
2.						
3.						
4.						
		<u>0</u>	.0 = T	otal Cover		

Rapid Test: Do all dominant species have an indicator status of OBL or FACW? Yes No								
<u>Dominance Test</u> :	Number of	Number of dominant speci	es that are	Do wetland indicator plants make up				
	dominant species	wetland indicator plants		≥ 50% of dominant plant species?				
	6	2		YesNo✓				
Prevalence Index:		Total % Cover (all strata)	Multiply by:	Result				
	OBL species		X 1	= 0.00				
	FACW species		X 2	= 0.00				
	FAC species		Х3	= 0.00				
	FACU species		X 4	= 0.00				
	UPL species		X 5	= 0.00				
	Column Totals	(A) 0		(B)0				
	Prevalence Index	B/A = 0.00		Is the Prevalence Index ≤ 3.0?				
		0.00		YesNo				
Wetland vegetation criterion met? Yes No								

Definitions of Vegetation Strata

Tree - Woody plants 3 in. (7.62 cm) or more in diameter at breast height (DBH), regardless of height Shrub / Sapling - Woody plants less than 3 in. (7.62 cm) DBH and greater than or equal to 3.3 ft. (1 m) tall

Herb - All herbaceous (non-woody plants, regardless of size, and woody plants less than 3.3 ft. (1 m) tall

Woody vines - All woody vines greater than 3.3 ft. (1 m) in height

Cover Ranges						
Range	Midpoint					
1-5 %	3.0 %					
6-15 %	10.5 %					
15-25 %	20.5 %					
26-50 %	38.0 %					
51-75 %	63.0 %					
76-95 %	85.5 %					
96-100 %	98.0 %					

Form Revised July 2023 3

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators)												
Depth	Matrix						eatures					
(inches)	Color (moist)	%	Colo	or (moist)		%	Type ¹	Locatio	n²	Texture	Remarks	
0-6 6-8	10yr 2/2 10yr 3/3									sandy loam		
8-18	10yr 4/4									Sandy Ioann		
	centration, D=Dep			uced N	/latri	x, MS=M	lasked San	d Grains			e Lining, M=Matrix	
	ndicators (Check	all that	apply)						Inc	licators for Pr	oblematic Hydric Soils	
Histosol	(A1)			P	olyv	alue Be	low Surfa	ce (S8)	<u> </u>	_2 cm Muck	(A10)	
Histic Ep	oipedon (A2)			<u> </u>	hin	Dark Su	rface (S9)		L_	5 cm Mucky	Peat or Peat (S3)	
Black Hi	stic (A3)				oam	ny Gleye	d Matrix	(F2)		Iron-Manga	nese Masses (F12)	
<u> </u>	en Sulfide (A4)			D	eple	eted Ma	trix (F3)			Mesic Spod	ic (A17)	
Stratifie	d Layers (A5)		_[R	ledo	x Dark S	Surface (F	6)		Red Parent Material (F21)		
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)							e (F7)		Very Shallow Dark Surface (F22)			
Thick Dark Surface (A12) Redox Depressions (F8)												
Sandy M	Nucky Mineral (Si	L)										
Sandy G	lleyed Matrix (S4)										
Sandy R	edox (S5)									Other (Inclu	de Explanation in	
Stripped	d Matrix (S6)									Remarks)		
Dark Su	rface (S7)											
Restrictive L	ayer (if observed) Тур	oe:					De	pth	(inches):		
Remarks:												
Hydric Soils criterion met? Yes No ✓												

Form Revised July 2023 4

BORDERING VEGETATED WETLAND DETERMINATION FORM

Project/Site: 21167-1A Millis Well 3	City/Town: Millis	Sampling Date: July 19 2023						
Applicant/Owner: Town of Millis	Sampling	Point or Zone: wet SP2						
Investigator(s): Leah Basbanes	Latitude /	Latitude / Longitude: 42.16809, -71.34063						
Soil Map Unit Name: SwanseaNWI or DEP Classification: WS1								
Are climatic/hydrologic conditions on the	e site typical for this time of year? Yes \Box	✓ No (If no, explain in Remarks)						
Are Vegetation, Soil, or	Hydrology significantly disturbed?	(If yes, explain in Remarks)						
Are Vegetation, Soil, or	Hydrology naturally problematic?	(If yes, explain in Remarks)						
SUMMARY OF FINDINGS – Attach site map and photograph log showing sampling locations, transects, etc.								
Wetland vegetation criterion met?	Yes No Is the Samp							
Hydric Soils criterion met?		within a Wetland?						
Wetlands hydrology present?	Yes✓_No							
Remarks, Photo Details, Flagging, etc.:								
HYDROLOGY								
Field Observations:								
	Vos No / Do	ath (in choc)						
	Surface Water Present? Yes No ✓ Depth (inches)							
	Water Table Present? Yes No Depth (inches)							
Saturation Present (including capillary f	ringe)? Yes ✓ No De _l	oth (inches) <u>10.00</u>						
Wetland Hydrology Indicators								
Reliable Indicators of Wetlands	Indicators that can be Reliable with	Indicators of the Influence of Water						
Hydrology	Proper Interpretation							
Water-stained leaves	Hydrological records	Direct observation of inundation						
Evidence of aquatic fauna	Free water in a soil test hole Saturated soil	Drainage patterns Drift lines						
Iron deposits Algal mats or crusts	Water marks	Scoured areas						
Oxidized rhizospheres/pore								
linings								
Thin muck surfaces	Presence of reduced iron	Surface soil cracks						
Plants with air-filled tissue Woody plants with adventitious Sparsely vegetated concave (aerenchyma) roots surface								
(aerenchyma) Plants with polymorphic leaves	roots ✓ Trees with shallow root systems	Microtopographic relief						
Plants with floating leaves	Woody plants with enlarged Geographic position (depression,							
Hydrogen sulfide odor	lenticels toe of slope, fringing lowland							
Remarks (describe recorded data from s	stream gauge, monitoring well, aerial pho	tos, previous inspections, if available):						

This form is only for BVW delineations. Other wetland resource areas may be present and should be delineated according to the applicable regulatory provisions.

VEGETATION – Use both common and scientific names of plants.

Method M	Tree Stratum	Plot size 30'				
Red Oak						
1. Red Oak	Common namo	Scientific name	Status	% Cover	(yes/no)	
2. White Pine			EACH	25.0	Vos	1
Red Maple						
				-		1
5.		Acertubium	IAC	23.0	165	163
6.						
7. 8. 9. 1						
8.						
Shrub/Sapling Stratum						
Shrub/Sapling Stratum						
Shrub/Sapling Stratum	<u>J.</u>	<u> </u>	75.0 = T	otal Cover		
Note	Shruh/Sanling Stratum	Plot size 15'	70.0	otal cover		
Common name Scientific name Status % Cover (yes/no) Indictor? (yes/no) 1. European Buckthom Rhamnus frangula FAC 20.0 Yes Yes 2. Higbush Blueberry Vaccinium corymbosum FACW 30.0 Yes Yes 3. Red Maple Acer rubrum FAC 10.0 No No 4. FAC 10.0 No No 5. FAC 10.0 No No 6. FAC 10.0 No No 7. FAC 10.0 Indicator No No 8. FAC 10.0 Indicator No No No 9. FAC 10.0 Indicator Absolute (yes/no) Wetland Indicator No Yes Yes<	Sili ub/ Sapiling Stratum	1101 3126 15	Indicator	Absolute	Dominant?	Wetland
Common name Scientific name (yes/no) 1. European Buckthorn Rhamnus frangula FAC 20.0 Yes Yes 2. Higbush Blueberry Vaccinium corymbosum FACW 30.0 Yes Yes 3. Red Maple Acer rubrum FAC 10.0 No No 4.						
European Buckthorn	Common name	Scientific name	Status	70 COVC1	(903/110)	
National Stratum Plot size 5' Scientific name FACW 10.0 Yes Yes Yes National Nationa			FAC	20.0	Yes	
Acer rubrum						
4.	•	·				
5.	<u>'</u>					
66.						
7. 8. 9. 1. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
8.						
9. GO.0 = Total Cover Herb Stratum Plot size 5' Indicator Status Absolute Status Dominant? (yes/no) Wetland (yes/no) Common name Scientific name FACW 40.0 Yes Yes 1. Cinnamon Fern Osmunda cinnamomea FACW 40.0 Yes Yes 2. Starflower Trientalis borealis FAC 10.0 Yes Yes 3. Image: Status Status Image: Status St						
Herb Stratum						
Herb Stratum		<u>'</u>	60.0 = T	otal Cover	L	1
Common nameScientific nameFACW40.0YesYes1. Cinnamon FernOsmunda cinnamomeaFACW40.0YesYes2. StarflowerTrientalis borealisFAC10.0YesYes3.4.10.0YesYes5.10.010.0YesYes6.10.010.0YesYes7.10.010.0YesYes8.10.010.0YesYes9.10.010.0YesYes10.10.010.0YesYes11.10.010.0YesYes12.10.010.010.0YesIndictor? Yes/no)12.10.010.010.0Indictor? Yes/no)15.10.010.010.0Indictor? Yes/no)16.10.010.0Indictor? Yes/no)17.10.010.0Indictor? Yes/no)18.10.010.0Indictor? Yes/no)19.10.010.0Indictor? Yes/no)10.10.010.0Indictor? Yes/no)10.10.010.0Indictor? Yes/no)10.10.010.0Indictor? Yes/no)10.10.010.0Indictor? Yes/no)10.10.010.0Indictor? Yes/no)10.10.010.0Indictor? Yes/no)10.10.010.0Indictor? Yes/no)10.10.0 <td>Herh Stratum</td> <td>Plot size 5'</td> <td></td> <td></td> <td></td> <td></td>	Herh Stratum	Plot size 5'				
Scientific name Status % Cover (yes/no) Indictor? (yes/no) 1. Cinnamon Fern Osmunda cinnamomea FACW 40.0 Yes Yes 2. Starflower Trientalis borealis FAC 10.0 Yes Yes 3. Image: Company of the compan	nero stratam	1100 3120 -	Indicator	Abcoluto	Dominant?	Motland
Common name Scientific name (yes/no) 1. Cinnamon Fern Osmunda cinnamomea FACW 40.0 Yes Yes 2. Starflower Trientalis borealis FAC 10.0 Yes Yes 3. Image: Common Fern of the Com						
1. Cinnamon Fern Osmunda cinnamomea FACW 40.0 Yes Yes 2. Starflower Trientalis borealis FAC 10.0 Yes Yes 3. Image: Control of the property of the prop	Common name	Scientific name	Status	70 COVC1	(903/110)	
2. Starflower Trientalis borealis FAC 10.0 Yes Yes 3. 4.			FACW	40.0	Yes	1
3. 4. .						1
4. 5. 5. 5. 5. 5. 6. 6. 6. 6. 7. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
5. 6. 9. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
6. 7. 8. 9. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
7. 8. 9. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
8. 9. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
10. 11. 12.						
11. 12.	9.					
12.	10.					
	11.					
EOO - Total Course	12.					
<u>50.0</u> = 10tal Cover			<u>50.0</u> = T	otal Cover		

VEGETATION – continued.

Woody Vine Stratum	Plot size						
		Indicator Status	Absolute % Cover	Dominant? (yes/no)	Wetland Indictor?		
Common name	Scientific name				(yes/no)		
1.							
2.							
3.							
4.							
<u>0.0</u> = Total Cover							

Rapid Test: Do all dominant species have an indicator status of OBL or FACW? Yes No								
Dominance Test :	Number of	Number of dominant speci	es that are	Do wetland indicator plants make up				
	dominant species	wetland indicator plants		≥ 50% of dominant plant species?				
	7	5		Yes _ 🗸 _ No				
Prevalence Index:		Total % Cover (all strata)	Multiply by:	Result				
	OBL species		X 1	= 0.00				
	FACW species		X 2	= 0.00				
	FAC species		Х3	= 0.00				
	FACU species		X 4	= 0.00				
	UPL species		X 5	= 0.00				
	Column Totals	(A) 0		(B) 0				
	Prevalence Index	B/A = 0 00		Is the Prevalence Index ≤ 3.0?				
		0.00		YesNo				
Wetland vegetation	Wetland vegetation criterion met? Yes No							

Definitions of Vegetation Strata

Tree - Woody plants 3 in. (7.62 cm) or more in diameter at breast height (DBH), regardless of height

Shrub / Sapling - Woody plants less than 3 in. (7.62 cm) DBH and greater than or equal to 3.3 ft. (1 m) tall

Herb - All herbaceous (non-woody plants, regardless of size, and woody plants less than 3.3 ft. (1 m) tall

Woody vines - All woody vines greater than 3.3 ft. (1 m) in height

Cover Ranges						
Range	Midpoint					
1-5 %	3.0 %					
6-15 %	10.5 %					
15-25 %	20.5 %					
26-50 %	38.0 %					
51-75 %	63.0 %					
76-95 %	85.5 %					
96-100 %	98.0 %					

Form Revised July 2023 3

SOIL

Profile Desc	ription: (Describe	e to the	depth n	eeded to	o docum	ent the ir	ndicator o	r co	nfirm the abso	ence of indicators)
Depth	Matrix				Redox Fe		Г	2		
(inches)	Color (moist)	%	Color	(moist)	%	Type ¹	Locatio	n²	Texture	Remarks
8-18	10yr 2/1 10yr 4/2								sandy loam	redox present
0.10										
¹Type: C=Con	 centration, D=Dep	letion RI	M-Radu	cod Matri	 v=N/1S=N/	 asked San	d Grains	21.0	cation: DI -Dore	Lining, M=Matrix
	ndicators (Check			cca iviatii	17, 1415–141	idsked San	u Grains			oblematic Hydric Soils
Histosol			<u> </u>	Polyv	/alue Be	low Surfa	ce (S8)		2 cm Muck	
Histic Ep	pipedon (A2)			Thin	Dark Sui	rface (S9)			5 cm Mucky	Peat or Peat (S3)
Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12)								nese Masses (F12)		
Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17)								c (A17)		
Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21)								Material (F21)		
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)								Very Shallow Dark Surface (F22)		
Thick Dark Surface (A12) Redox Depressions (F8)										
Sandy M	lucky Mineral (S	1)								
Sandy G	leyed Matrix (S4)								
Sandy R	edox (S5)								Other (Inclu	de Explanation in
Stripped Matrix (S6) Remarks)										
Dark Su	rface (S7)									
Restrictive La	ayer (if observed	I) Тур	oe:				De	pth	(inches):	
Remarks:										
Hydric Soils	criterion met?		Yes	√	No					

Form Revised July 2023 4

BORDERING VEGETATED WETLAND DETERMINATION FORM

Project/Site: 21167-1A Millis Well 3	City/Town: Millis	Sampling Date: July 19 2023							
Applicant/Owner: Town of Millis Sampling Point or Zone: wet SP5									
Investigator(s): Leah Basbanes	nvestigator(s): Leah Basbanes Latitude / Longitude: 42.16917, -7134025								
Soil Map Unit Name: Swansea	NWI or DI	EP Classification: WS1							
Are climatic/hydrologic conditions on the	site typical for this time of year? Yes \Box	✓ No (If no, explain in Remarks)							
Are Vegetation, Soil, or Hydrology significantly disturbed? (If yes, explain in Remarks)									
Are Vegetation, Soil, , or	Hydrology naturally problematic?	(If yes, explain in Remarks)							
SUMMARY OF FINDINGS – Attach site map and photograph log showing sampling locations, transects, etc.									
Wetland vegetation criterion met? Hydric Soils criterion met? Wetlands hydrology present?	Yes ✓ No Is the Samp Yes ✓ No within a W								
	Yes √ No								
Remarks, Photo Details, Flagging, etc.:									
HYDROLOGY									
Field Observations:									
Surface Water Present?	Yes No ✓ De	oth (inches)							
Water Table Present?	Yes No <u>✓</u> De _l	oth (inches)							
Saturation Present (including capillary fi	ringe)? Yes 🗸 No De _l	oth (inches)_ ^{9.00}							
Wetland Hydrology Indicators									
Reliable Indicators of Wetlands	Indicators that can be Reliable with	Indicators of the Influence of Water							
Hydrology	Proper Interpretation								
✓ Water-stained leaves	Hydrological records	Direct observation of inundation							
Evidence of aquatic fauna	Free water in a soil test hole	Drainage patterns							
Iron deposits Algal mats or crusts	✓ Saturated soil Water marks	Drift lines Scoured areas							
Oxidized rhizospheres/pore	Moss trim lines	Sediment deposits							
linings		seament deposits							
Thin muck surfaces	Presence of reduced iron	Surface soil cracks							
Plants with air-filled tissue	Woody plants with adventitious	Sparsely vegetated concave							
(aerenchyma)	roots	surface							
Plants with polymorphic leaves Plants with floating leaves	✓ Trees with shallow root systems ✓ Woody plants with enlarged	Microtopographic relief Geographic position (depression,							
Hydrogen sulfide odor	lenticels	toe of slope, fringing lowland							
	I stream gauge, monitoring well, aerial pho								
	5-1-5-1, 11-1-1, 1	, [

This form is only for BVW delineations. Other wetland resource areas may be present and should be delineated according to the applicable regulatory provisions.

VEGETATION – Use both common and scientific names of plants.

Status	etland
Common name	
1. Red Oak	lictor?
2. White Pine	es/no)
3. Red Maple	
4. 5. 6.	
5. 6. 1	<u>;</u>
6.	
7.	
8.	
Shrub/Sapling Stratum	
Shrub/Sapling Stratum	
Shrub/Sapling Stratum	
Indicator Status	
Status	etland
Common name Scientific nam	lictor?
1. European Buckthorn Rhamnus frangula FAC 40.0 Yes Yes 2. Higbush Blueberry Vaccinium corymbosum FACW 30.0 Yes Yes 3. Red Maple Acer rubrum FAC 10.0 No No 4. Status Status Status Status Status Status Status Dominant? (yes/no) Western Street Common name Scientific name FACW 40.0 Yes Yes Yes 2. Smunda cinnamomea FACW 40.0 Yes Yes	
2. Higbush Blueberry Vaccinium corymbosum FACW 30.0 Yes Yes 3. Red Maple Acer rubrum FAC 10.0 No No 4.	
Acer rubrum	
4.	<u>'</u>
5. 6. 7. 8. 9. 9. 80.0 = Total Cover Herb Stratum Plot size 5'	
6. 7. 8. 9.	
7. 8. 9.	
8. 9. 80.0 = Total Cover Herb Stratum Plot size 5' Indicator Status Absolute Status Dominant? We Status Status % Cover (yes/no) Indicator Status FACW 40.0 Yes 1. Cinnamon Fern Osmunda cinnamomea FACW 40.0 Yes Yes 2.	
9. 80.0 = Total Cover Herb Stratum Plot size 5' Indicator Absolute Dominant? We Status % Cover (yes/no) Indicator Status 1. Cinnamon Fern Osmunda cinnamomea FACW 40.0 Yes Yes 2.	
B0.0	
Herb Stratum Plot size 5' Indicator Absolute Dominant? We Status % Cover (yes/no) Indicator % Cover (yes/no) Indicator Status % Cover (yes/no) Indicator % Cover (yes/no)	
Indicator Absolute Dominant? We Status % Cover (yes/no) Indicator % Cover (yes/no) Indi	
Common name Scientific name 1. Cinnamon Fern Osmunda cinnamomea FACW Ves/no) Ind (yes/no) Ind (atland
Common nameScientific name(ye)1. Cinnamon FernOsmunda cinnamomeaFACW40.0YesYes2.Image: Common Fern of the Common Fern	lictor?
1. Cinnamon FernOsmunda cinnamomeaFACW40.0YesYes2.Image: Control of the control of	es/no)
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
<u>40.0</u> = Total Cover	

VEGETATION – continued.

Woody Vine Stratum	Plot size							
		Indicator Status	Absolute % Cover	Dominant? (yes/no)	Wetland Indictor?			
Common name	Scientific name				(yes/no)			
1. Poison Ivy	Toxicodendron radicans	FAC	30.0	Yes	Yes			
2.								
3.								
4.								
<u>30.0</u> = Total Cover								

Rapid Test: Do all dominant species have an indicator status of OBL or FACW? Yes No								
Dominance Test:	Number of	Number of dominant speci	Do wetland indicator plants make up					
	dominant species	wetland indicator plants		≥ 50% of dominant plant species?				
	7	5		Yes _ 🗸 _ No				
Prevalence Index:		Total % Cover (all strata)	Multiply by:	Result				
	OBL species		X 1	= 0.00				
	FACW species		X 2	= 0.00				
	FAC species		Х3	= 0.00				
	FACU species		X 4	= 0.00				
	UPL species		X 5	= 0.00				
	Column Totals	(A) 0		(B) 0				
	Prevalence Index	B/A = 0 00		Is the Prevalence Index ≤ 3.0?				
		0.00		YesNo				
Wetland vegetation	Wetland vegetation criterion met? Yes ✓ No							

Definitions of Vegetation Strata

Tree - Woody plants 3 in. (7.62 cm) or more in diameter at breast height (DBH), regardless of height

Shrub / Sapling - Woody plants less than 3 in. (7.62 cm) DBH and greater than or equal to 3.3 ft. (1 m) tall

Herb - All herbaceous (non-woody plants, regardless of size, and woody plants less than 3.3 ft. (1 m) tall

Woody vines - All woody vines greater than 3.3 ft. (1 m) in height

Cover Ranges						
Range	Midpoint					
1-5 %	3.0 %					
6-15 %	10.5 %					
15-25 %	20.5 %					
26-50 %	38.0 %					
51-75 %	63.0 %					
76-95 %	85.5 %					
96-100 %	98.0 %					

Form Revised July 2023 3

SOIL

Profile Desc	cription: (Describe	e to the	depth n	eeded to	o docum	ent the ir	ndicator o	r co	nfirm the abso	ence of indicators)
Depth	Matrix	ı .			Redox Fe		Г	2		
(inches)	Color (moist)	%	Color	(moist)	%	Type ¹	Locatio	n²	Texture	Remarks
8-18	10yr 5/2	10yr 2/1							sandy loam	redox present
0.10	,									
¹Type: C=Cor	 ncentration, D=Dep	letion R	M-Radu	cod Matri	 v=N/IS=N/	 asked San	d Grains	21.0	cation: DI -Dore	Lining, M=Matrix
	Indicators (Check			cca iviatii	17, 1715–17	iaskea san	u Grains			oblematic Hydric Soils
Histoso				Poly	/alue Be	low Surfa	ce (S8)		2 cm Muck	
	pipedon (A2)					rface (S9)				Peat or Peat (S3)
Black Histic (A3) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12)								nese Masses (F12)		
Hydrogen Sulfide (A4) Depleted Matrix (F3) Mesic Spodic (A17)								c (A17)		
Stratified Layers (A5) Redox Dark Surface (F6) Red Parent Material (F21)								Material (F21)		
Depleted Below Dark Surface (A11) Depleted Dark Surface (F7)								Very Shallow Dark Surface (F22)		
Thick Dark Surface (A12) Redox Depressions (F8)										
Sandy I	Mucky Mineral (S	1)								
Sandy	Gleyed Matrix (S4	.)								
Sandy I	Redox (S5)								Other (Inclu	de Explanation in
Stripped Matrix (S6) Remarks)										
Dark Su	urface (S7)									
Restrictive I	Layer (if observed	i) Typ	oe:				De	pth	(inches):	
Remarks:										
Hydric Soils	criterion met?		Yes	√	No					

Form Revised July 2023 4

ATTACHMENT D Project Plans

TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

PERMIT REVIEW SET

OCTOBER 2023

SELECT BOARD

CRAIG SCHULTZE

CHAIR

ELLEN ROSENFELD

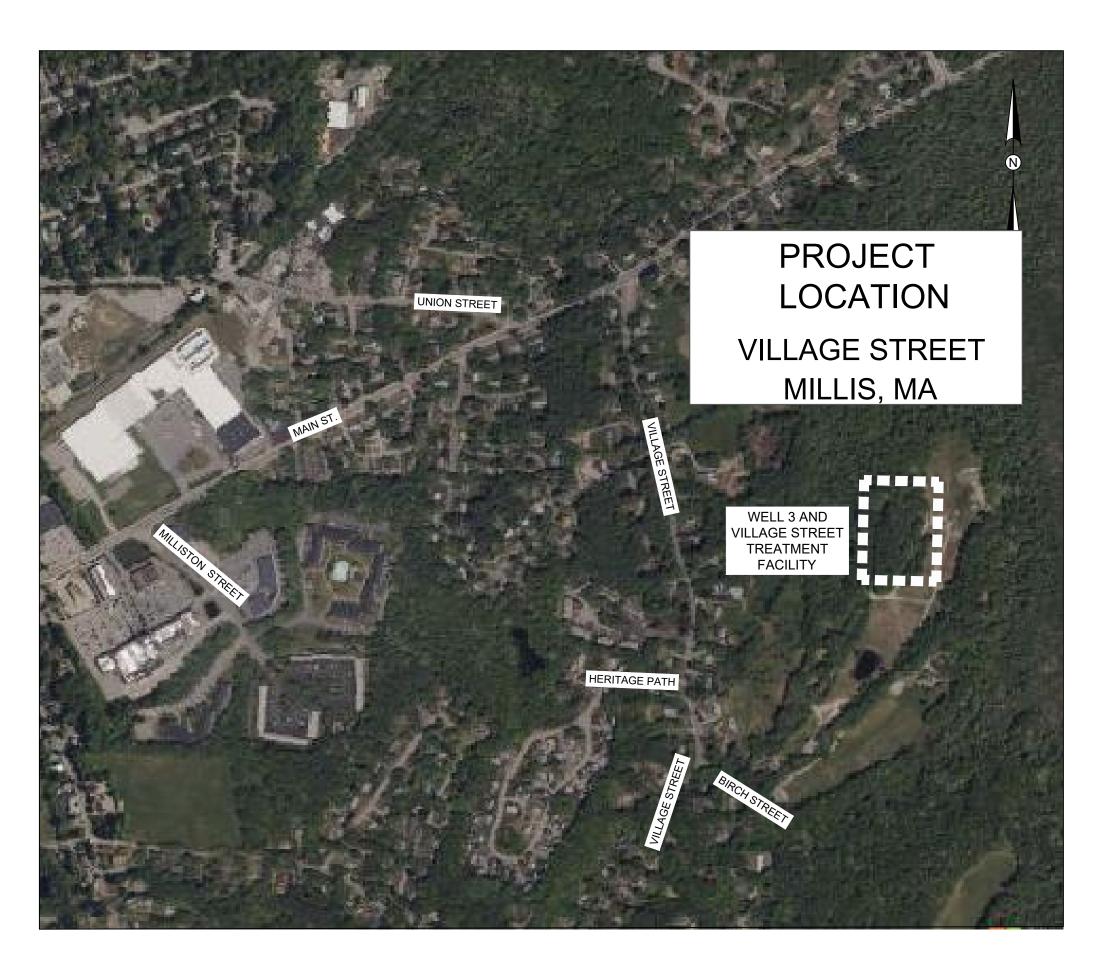
VICE CHAIR

ERIN UNDERHILL

CLERK

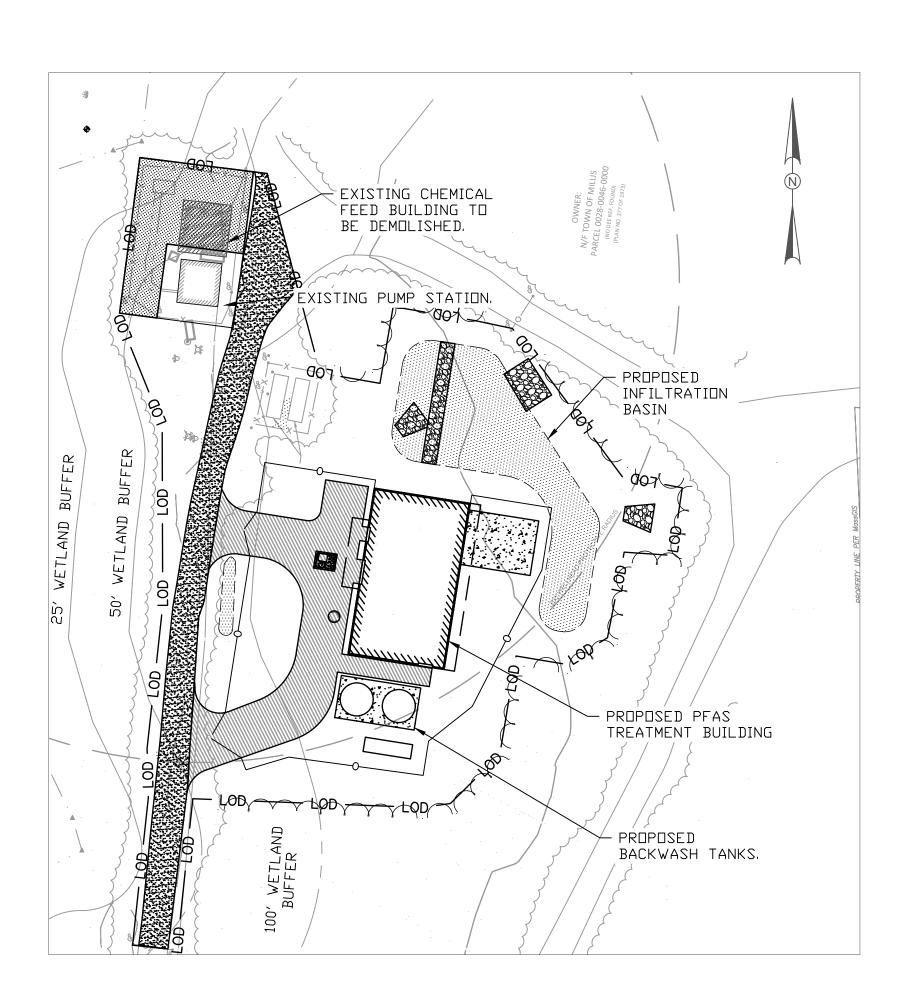
DEPARTMENT OF PUBLIC WORKS

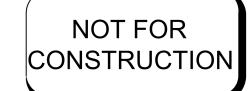
JAMES F. McKAY


DIRECTOR

WATER AND SEWER DEPARTMENT

RON McKENNEY


SUPERINTENDENT



SITE PLAN SCALE: 1" = 40'

GENERAL NOTES: EXISTING LEGEND

SPOT ELEVATION

HYDRANT

WATER GATE

WATER WELL

ELECTRIC LINE

UTILITY POLE

TRANSFORMER

ELECTRIC MANHOLE

DIGSAFE GAS LINES

RECORD GAS LINES

GUY WIRE

GAS METER

SOIL PLOT

TREELINE

DRAIN LINE

SEWER LINE

WETLAND FLAG

WETLAND BUFFER

CHAINLINK FENCE

DRAIN MANHOLE

SEWER MANHOLE

CHAIN LINK FENCE

EDGE OF PAVEMENT

CONCRETE PAD

DUCTILE IRON

PROPOSED LEGEND

CHAIN LINK FENCE

PROPOSED TREELINE

—— G —— GAS LINE

— □ — DRAIN LINE

---- w ---- WATER LINE

— 8" RW — RAW WATER LINE

-EROSION CONTROL

— LOD — LIMIT OF DISTURBANCE

SEWER LINE

BACKWASH LINE

— 133 — PROPOSED 1-FT CONTOUR

VEHICULAR ACCESS GATE

PROPOSED WATER GATE

MODIFIED ROCKFILL

PROPOSED BUILDING

CONCRETE PAD

AREA OF WETLAND RESTORATION

EXTENT OF ASPHALT PAVING

EXTENT OF STORMWATER FEATURE

EXTENT OF MATERIAL DEMOLITION

EXTENT OF TREE CLEARING AND GRUBBING

₩ ₩ ₩ WETLAND LIMIT

OVERHEAD WIRES

STANDPIPE

——DSW——

---A/R

—— ОНW ——

 \bigcirc

CLF

SP SP

DIGSAFE WATER LINE

RECORD WATER LINE

ABANDONED/REMOVED WATER LINE

1. PRIOR TO BIDDING THE PROJECT, THE CONTRACTOR IS ENCOURAGED VISIT THE SITE TO VERIFY EXISTING CONDITIONS. MINOR CONTOUR —130— MAJOR CONTOUR

2. BASE MAP INFORMATION FOUND ON SHEETS C-101, C-102, C-103, C-104, AND C-105 WAS PREPARED BY BRENNAN CONSULTING, INC. ON SEPTEMBER 1, 2022, SEPTEMBER 6, 2022, AND JULY 25, 2023. THE COORDINATES OF THE SURVEY ARE IN FEET AND ARE BASED UPON THE NORTH AMERICAN DATUM OF 1983 MASSACHUSETTS STATE PLANE (NAD '83 MASSACHUSETTS STATE PLANE, MAINLAND ZONE). THE ELEVATIONS OF THE SURVEYS ARE IN FEET AND REFER TO NORTH AMERICAN VERTICAL DATUM OF 1988 (NAD '88).

3. FOR TEMPORARY BENCH MARKS, SEE SHEET C-101:

TBM BREN-1: BENCH TIE SPIKE SET IN UTILITY POLE AT WELL BUILDING. ELEVATION = 124.79' TBM BREN-2: X-CUT ON HYDRANT BONNET NUT. ELEVATION = 125.29'

4. THE PROPERTY LINES SHOWN HERE WERE COMPILED FROM MASSGIS ONLINE DATABASE, ARE APPROXIMATE ONLY, AND ARE SHOWN FOR GRAPHICAL PURPOSES ONLY

5. THE WETLANDS DEPICTED HEREON WERE DELINEATED ON JULY 19, 2023.

6. THE CONTRACTOR SHALL CALL THE DIG-SAFE CENTER AT 1-888-344-7233 A MINIMUM OF 72 HOURS PRIOR TO ANY EXCAVATION TO LOCATE UNDERGROUND UTILITIES IN THE FIELD AND NOTIFY UTILITIES OF CONSTRUCTION.

7. INFORMATION SHOWN ON THE DRAWINGS RELATING TO MATERIALS, CONDITIONS AND/OR LOCATIONS OF EXISTING STRUCTURES AND UTILITIES HAS BEEN COMPILED FROM AVAILABLE INFORMATION INCLUDING FIELD SURVEY, AERIAL PHOTOGRAPHY, RECORD MAPS AND DRAWINGS, AND UTILITY RECORD DRAWINGS AND IS NOT GUARANTEED CORRECT OR COMPLETE. IT IS THE CONTRACTOR'S RESPONSIBILITY TO VERIFY EXISTING CONDITIONS AND DIMENSIONS INCLUDING THE LOCATION AND DEPTH OF ALL UTILITIES PRIOR TO BEGINNING CONSTRUCTION. LOCATIONS AND DEPTHS OF CRITICAL UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR IN THE FIELD BY TEST PITS AS APPROVED BY THE ENGINEER. ANY DAMAGE TO UTILITIES CAUSED BY THE CONTRACTOR SHALL BE THE CONTRACTOR'S RESPONSIBILITY, AND COSTS FOR THE REPAIR OR REPLACEMENT OF SUCH DAMAGED UTILITIES SHALL BE BORNE BY THE CONTRACTOR.

8. ACCORDING TO FEMA FIRM (FLOOD INSURANCE RATE MAP) COMMUNITY PANEL 250244; REVISION DATED 7/17/2012, THE APPROXIMATE FLOODPLAIN ELEVATION ON THE SITE IS 123 FEET

9. THE PROPOSED PROJECT REQUIRE NOTICE OF INTENT APPROVAL BY THE TOWN OF MILLIS CONSERVATION COMMISSION. ALL CONSTRUCTION ACTIVITIES SHALL BE COMPLETED IN ACCORDANCE WITH THAT

SOIL EROSION AND SEDIMENT CONTROL NOTES

1. APPROPRIATE EROSION AND SEDIMENT CONTROL MEASURES SHALL BE INSTALLED PRIOR TO SOIL DISTURBANCE. MEASURES SHALL BE TAKEN TO CONTROL EROSION WITHIN THE PROJECT AREA. SEDIMENT IN RUNOFF WATER SHALL BE TRAPPED AND RETAINED WITHIN THE PROJECT AREA. WETLAND AREAS AND SURFACE WATERS SHALL BE PROTECTED FROM SEDIMENT.

2. CONTRACTOR SHALL MINIMIZE TOTAL AREA OF DISTURBANCE AND PROTECT NATURAL FEATURES AND SOIL

3. INSTALL AND MAINTAIN ALL EROSION AND SEDIMENT CONTROL MEASURES IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS AND/OR IN ACCORDANCE WITH ALL PERMIT REQUIREMENTS THE MORE STRINGENT REQUIREMENT SHALL APPLY.

4. CONTRACTOR TO COMPLY WITH APPLICABLE FEDERAL, STATE AND LOCAL LAWS AND REGULATIONS INCLUDING WASTE DISPOSAL

CONTRACTOR SHALL PROPERLY MANAGE ON-SITE CONSTRUCTION AND WASTE MATERIALS.

CONTRACTOR SHALL IMPLEMENT APPROPRIATE DUST CONTROL MEASURES AT THE SITE.

7. STOCKPILE SIDE SLOPES SHALL NOT BE GREATER THAN 1:1. ALL STOCKPILES SHALL BE SURROUNDED BY SEDIMENT CONTROLS.

8. A VEHICLE TRACKING PAD OR OTHER APPROVED STABILIZATION METHOD SHALL BE CONSTRUCTED AT ALL ENTRANCE/EXIT POINTS OF THE SITE TO PREVENT SOIL CARRIED ONTO ROADWAYS AND OFF THE SITE. CONTRACTOR SHALL FURNISH A MECHANICAL SWEEPER ON SITE FOR THE PURPOSE OF SWEEPING ALL PAVED AREAS ON A DAILY BASIS OR AS REQUIRED TO PREVENT SOIL TRACKING ON ROADWAYS.

9. ALL PREVIOUSLY DISTURBED LAND SHALL BE STABILIZED BY APPROVED METHODS WITHIN 14 DAYS IF LEFT UNDISTURBED. THIS INCLUDES STOCKPILES, CONSTRUCTION ENTRANCES, GRADED AREAS AND OTHER CONSTRUCTION ACTIVITY RELATED CLEARING

10. PERMANENT SEEDING SHALL BE UNDERTAKEN IN THE SPRING FROM APRIL 15 THROUGH JUNE 1, AND IN LATE SUMMER AND EARLY FALL FROM AUGUST 15 THROUGH OCTOBER 15. DURING THE PEAK SUMMER MONTHS AND IN THE FALL AFTER OCTOBER 15, WHEN SEEDING IS FOUND TO BE IMPRACTICAL, APPROPRIATE TEMPORARY STABILIZATION SHALL BE APPLIED. PERMANENT SEEDING MAY BE UNDERTAKEN DURING THE SUMMER IF PLANS PROVIDE FOR ADEQUATE MULCHING AND WATERING.

11. IF WORK IS HALTED OVER WINTER MONTHS THE CONTRACTOR SHALL BE RESPONSIBLE FOR STABILIZING THE AREA THROUGH GROUNDCOVER PRACTICES.

12. CONTRACTOR SHALL INSTALL EROSION AND SEDIMENTATION CONTROLS IN ACCORDANCE WITH SPECIFICATION SECTION 01568 AND DETAILS PROVIDED ON SHEET C-101 THROUGH C-502.

WORK OF GENERAL CONTRACTOR:

1. THE GENERAL CONTRACTOR SHALL FURNISH ALL LABOR, MATERIALS, EQUIPMENT AND INCIDENTALS REQUIRED TO COMPLETE THE VILLAGE STREET WTP PFAS UPGRADES, COMPLETE AND READY FOR OPERATION AS INDICATED ON THE DRAWINGS AND SPECIFICATIONS, INCLUDING ALL CONTRACT DOCUMENTS

2. THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR THE COORDINATION OF SUBCONTRACTORS' WORK WITH EACH OTHER AND WITH THE WORK OF THE GENERAL CONTRACTOR.

3. THE GENERAL CONTRACTOR SHALL BE RESPONSIBLE FOR THE OVERALL CONSTRUCTION SEQUENCE AND NOTE THAT THE EXTREME IMPORTANCE OF THIS PROJECT. THE VILLAGE STREET WTP WILL BE OFFLINE DURING THE DURATION OF CONSTRUCTION.

4. THE GENERAL CONTRACTOR SHALL NOT STORE EQUIPMENT OR STOCKPILE MATERIAL WITHIN 50' WETLAND BUFFER ZONES.

5. THE GENERAL CONTRACTOR SHALL PROVIDE ADEQUATE EROSION CONTROL DURING CONSTRUCTION. SEE SPECIFICATION SECTION 01568 AND NOTES ON THIS PAGE.

6. SOME PIPE/EQUIPMENT CONNECTIONS MAY REQUIRE TRANSITION FITTING OR OTHER FITTINGS NOT SHOWN ON DRAWINGS, THE CONTRACTOR SHALL PROVIDE ADEQUATE FITTING TO MAKE COMPLETE

7. WHERE BURIED DUCTILE IRON PIPE LEAVES/ENTERS A BUILDING OR STRUCTURE, THE GENERAL CONTRACTOR SHALL PROVIDE MULTIPLE MECHANICAL JOINT BELLS.

8. PROPOSED FIELD MODIFICATION, REVISIONS AND ADDITIONS TO THE DESIGN DRAWINGS MUST BE APPROVED BY THE ENGINEER, IN WRITING, BEFORE WORK BEGINS. ANY REQUEST TO DEVIATE FROM THE ENGINEER'S SPECIFIED DETAILS ON THE DESIGN DRAWINGS BY THE CONTRACTOR MUST BE SUBMITTED IN WRITING TO THE ENGINEER FOR APPROVAL.

9. GENERAL CONTRACTOR AND SUBCONTRACTORS MUST PROVIDE ALL MATERIAL, LABOR, EQUIPMENT, CONSUMABLES, AND ALL OTHER ITEMS REQUIRED TO COMPLETE THE WORK AS SPECIFIED ON THE DESIGN DRAWINGS, PROJECT SPECIFICATIONS, AND AS NECESSARY TO COMPLETE THE WORK.

10. GENERAL CONTRACTOR AND SUBCONTRACTORS SHALL VISIT THE PROJECT SITE AND OBSERVE CONDITIONS FOR THE PROPOSED CONSTRUCTION. ANY DISCREPANCY BETWEEN THE DESIGN DRAWINGS

AND ACTUAL SITE CONDITIONS MUST BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER, IN WRITING, FOR RESOLUTION PRIOR TO COMMENCEMENT OF THE WORK.

11. THE CONTRACTOR SHALL FIELD VERIFY EXISTING CONDITIONS, ELEVATIONS AND DIMENSIONS PRIOR TO FABRICATING NEW WORK THAT WILL BE CONNECTED TO EXISTING CONSTRUCTION.

12. ALL ITEMS OF CONSTRUCTION MUST BE IN ACCORDANCE WITH LOCAL, STATE AND FEDERAL REGULATIONS APPLICABLE TO THE PROJECT.

13. THE CONTRACTOR IS RESPONSIBLE FOR SEGREGATING WORK AREAS FROM THE GENERAL PUBLIC USING TEMPORARY FENCES, SIGNS, CONES, CAUTION TAPE, ETC.

14. THE CONTRACTOR'S BASE BID FOR THIS PROJECT MUST INCLUDE ALL LABOR, MOBILIZATION, PERMITTING, MATERIALS, TEMPORARY PROTECTION, ETC. NO ADDITIONAL COSTS WILL BE SUBMITTED TO THE ENGINEER IN ORDER TO COMPLETE THE INTENT OF THE WORK AS INDICATED ON THE DESIGN DRAWINGS.

15. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING WATER AND ELECTRICITY REQUIRED TO PERFORM THE WORK. SUBMIT PROPOSED MEANS AND METHODS TO THE ENGINEER FOR REVIEW.

16. ALL DIMENSIONS AND QUANTITIES MUST BE DETERMINED OR VERIFIED BY THE CONTRACTOR. QUANTITIES TO BE CARRIED UNDER THE BASE BID WORK HAVE BEEN INDICATED ON THE CONTRACT DRAWINGS. THE CONTRACT DRAWINGS HAVE BEEN COMPILED FROM VARIOUS SOURCES AND MAY NOT REFLECT THE ACTUAL CONDITION AT THE MOMENT OF CONSTRUCTION. THE CONTRACTOR IS CAUTIONED TO TAKE ALL PRECAUTIONS AND MAKE ALL INVESTIGATIONS NECESSARY TO INSTALL THE PROPOSED WORK.

17. ITS THE RESPONSIBILITY OF THE GENERAL CONTRACTOR AND THE SUBCONTRACTOR TO REVIEW ALL DRAWINGS, PROJECT MANUAL, AGENDA ETC. IN ORDER TO ASSURE THE COORDINATION OF ALL WORK AFFECTING EACH TRADE. FAILURE TO REVIEW AND COORDINATE ALL CONTRACTOR DOCUMENTS BY THE GENERAL WITH ALL THE SUBCONTRACTORS FOR APPLICABLE ITEMS OF THE WORK SHALL NOT RELIEVE THE RESPONSIBILITY PARTY FROM PERFORMING ALL WORK SO REQUIRED AS PART OF THE CONTRACT.

18. ITS IS THE RESPONSIBILITY OF THE GENERAL CONTRACTOR AND THE SUBCONTRACTOR FOLLOWING THE REVIEW OF ALL THE DRAWINGS, PROJECT MANUAL, ADDENDA, ETC. TO INFORM THE ENGINEER OF ANY DISCREPANCIES IN THE DOCUMENTS AND TO OBTAIN CLARIFICATION ON ALL ITEMS AFFECTING CONSTRUCTION COST PRIOR TO THE SUBMISSION OF THE BID.

> NOT FOR CONSTRUCTION

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800

www.kleinfelder.com

Signed By:		#	
	REVISIONS		

REV DESCRIPTION		DSM	CHK	DATE
IXL V	DESCRIPTION	DWN	APP	DATE

SCALE VERIFICATION

THIS BAR IS 1 IN	
0	1"

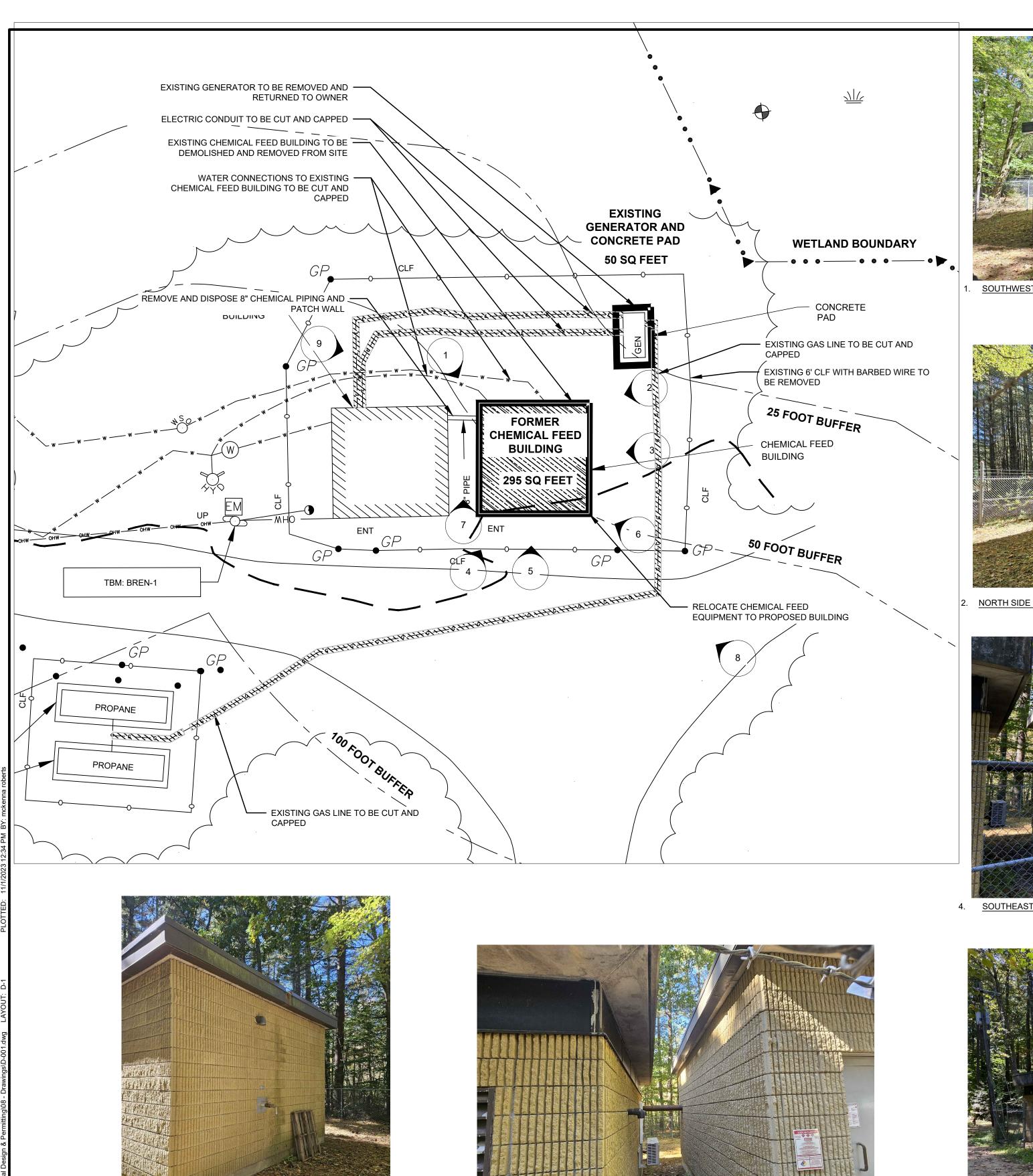
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

GENERAL NOTES AND LEGEND

TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054


PERMIT REVIEW SET

PROJECT NO. 2023	3667.002A
ISSUE DATE	OCT. 2023
CURRENT REVISIO	N -
DESIGNED BY	TB
DRAWN BY	MR
CHECKED BY	TB
APPROVED BY	ABB

G-001

SHEET

2 of 60

7. <u>EAST SIDE OF PIPING BETWEEN CHEMICAL FEED BUILDING AND WELL PUMP HOUSE FACING WEST</u>

6. NORTHEAST CORNER OF BUILDING FACING SOUTHWEST.

SOUTHWEST CORNER OF CHEMICAL FEED BUILDING FACING NORTHEAST

NORTH SIDE OF BUILDING FACING SOUTHEAST

4. SOUTHEAST CORNER OF BUILDING FACING NORTHWEST.

8. NORTHEAST CORNER OF FACILITY OUTSIDE OF FENCE FACING SOUTHWEST

NOTES

1) CONTRACTOR SHALL REMOVE AND DISPOSE OF ALL DEMOLISHED BUILDINGS MATERIALS, INCLUDING

2) CONTRACTOR TO DECOMMISSION EXISTING

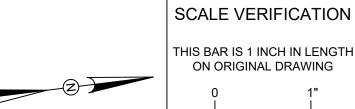
CONCRETE SLAB AND FOUNDATION. FOR DETAILS

ELECTRICAL AND WATER SERVICES AS SHOWN ON

SHEET C-102 PRIOR TO BUILDING DEMOLITION.

REGARDING DEMOLITION OF EXISTING BUILDINGS SEE SPECIFICATION SECTIONS 02050 AND 02221.

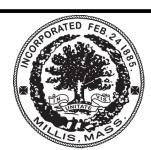
9. WESTERN SIDE OF FACILITY FACING NORTH EAST



NOT FOR CONSTRUCTION

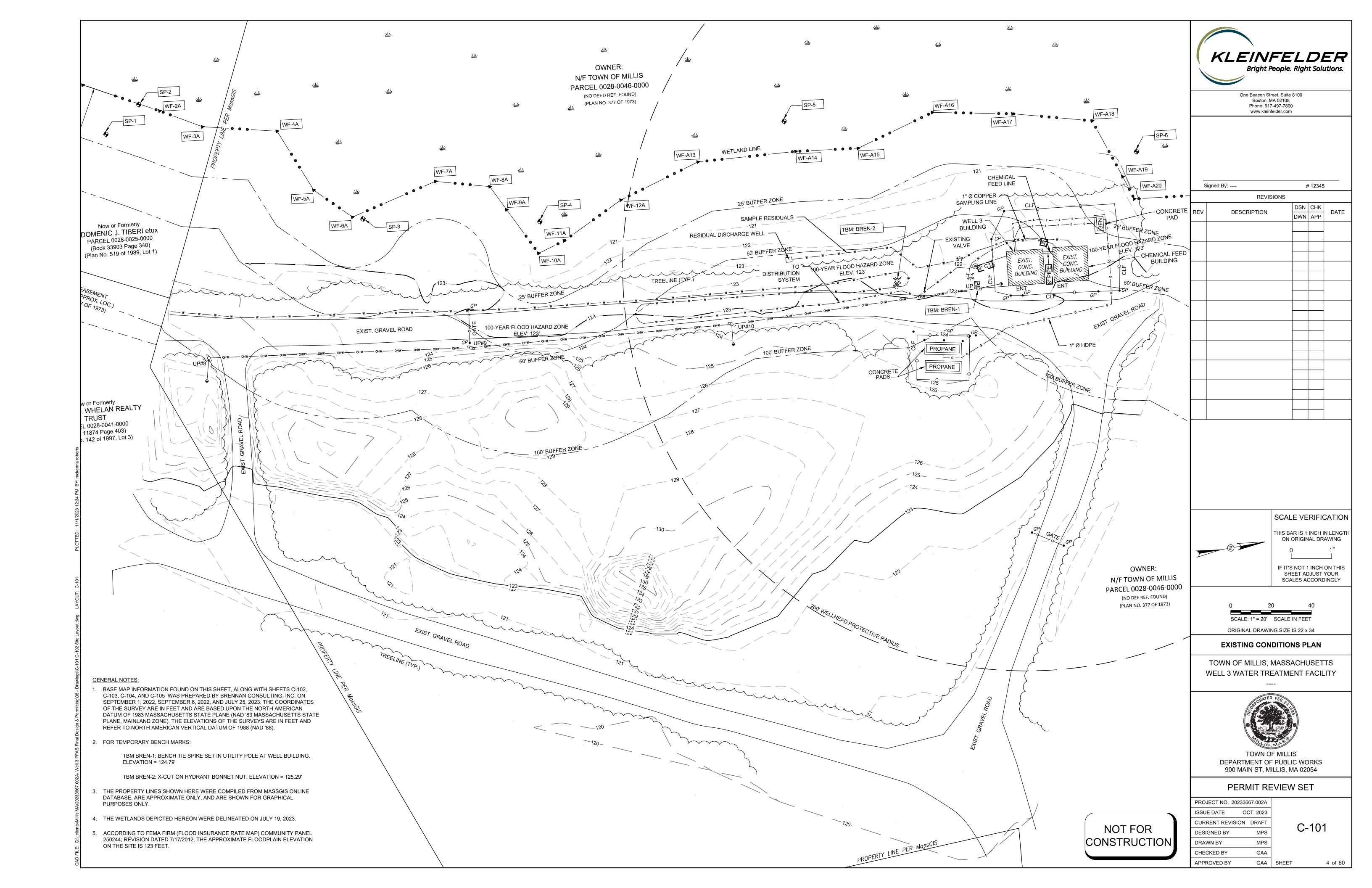
One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

	REVISIONS			
REV	DESCRIPTION	DSN	СНК	DATE
KEV	DESCRIPTION	DWN	APP	DATE

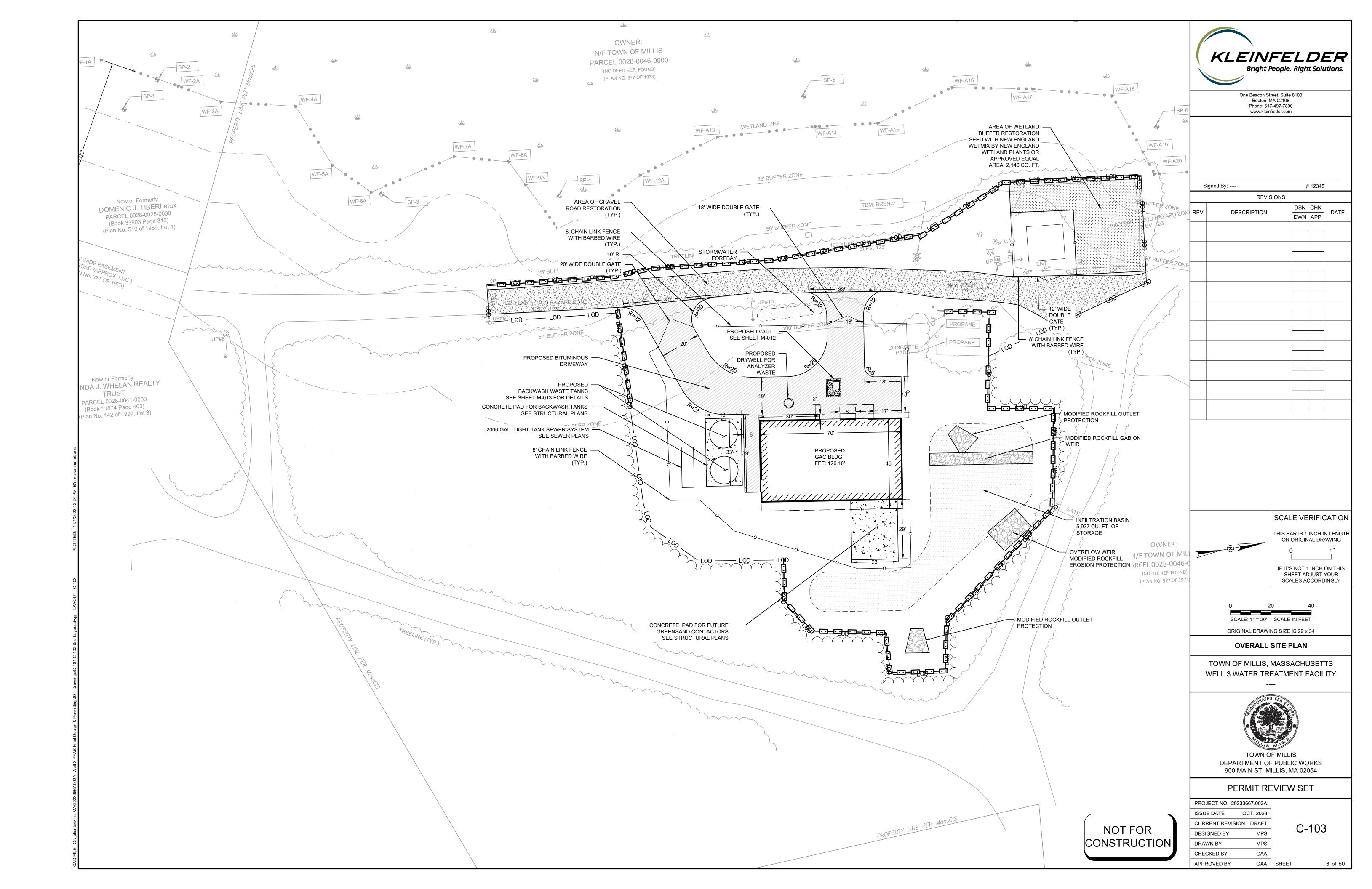


IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

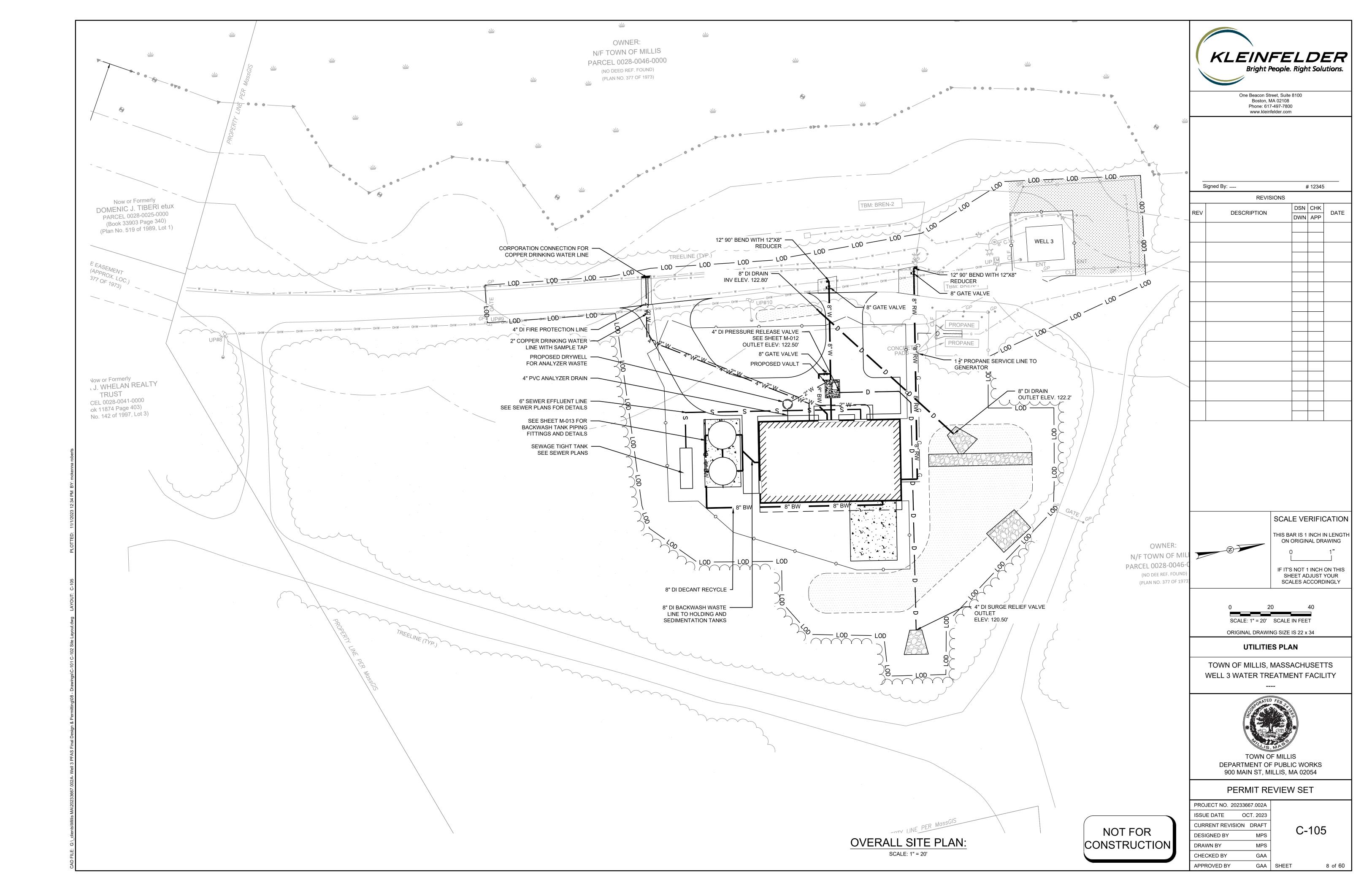
DEMOLITION PLAN

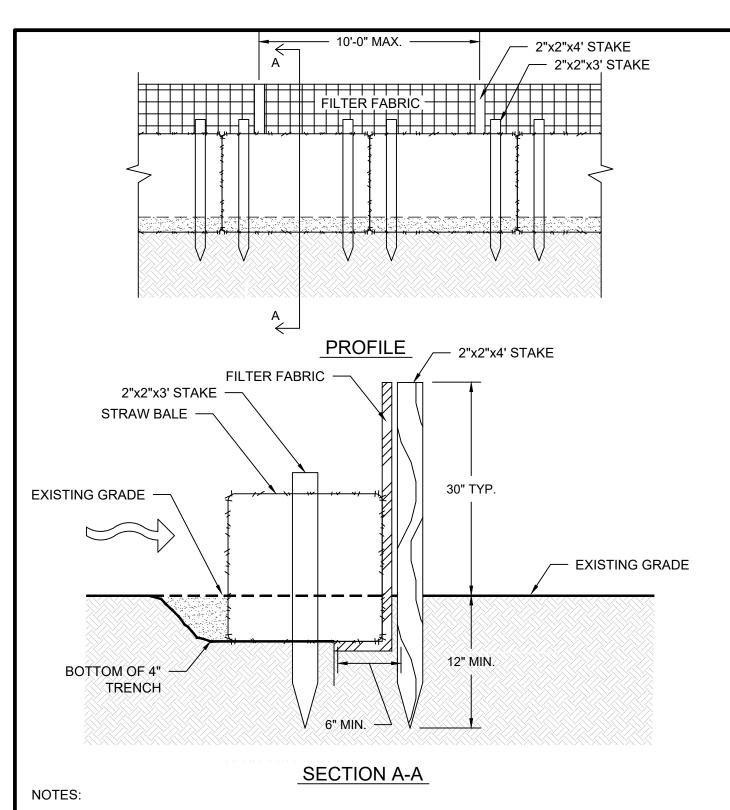

ORIGINAL DRAWING SIZE IS 22 x 34

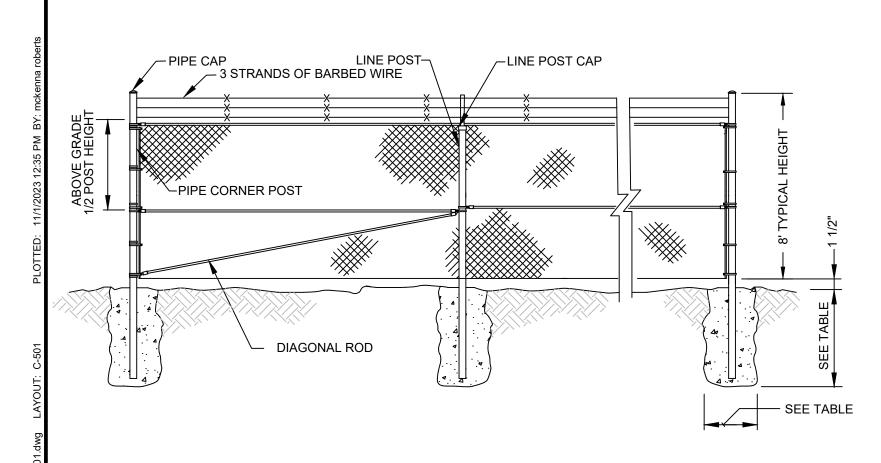
TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY




TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054


PERI	MIT RE	EVIEW	SET
PROJECT NO. 202336	667.002A		
ISSUE DATE O	CT. 2023		
CURRENT REVISION	1		D-001
DESIGNED BY	MPS		ו טט-ט
DRAWN BY	MPS		
CHECKED BY	GAA		
APPROVED BY	GAA	SHEET	

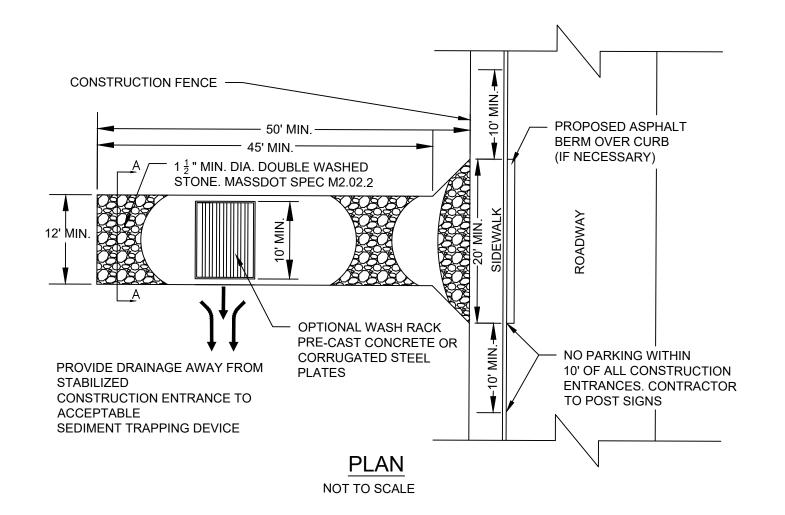


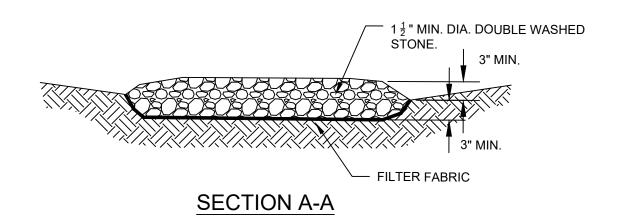


- 1. FABRIC TO BE UV RESISTANT POLYPROPYLENE WITH A MINIMUM WEIGHT OF 2.5 OZ./S.Y.
- 2. FABRIC TO BE ATTACHED TO STAKES WITH STAPLES.
- 3. USE SLIT FENCE AND STRAW BALES WHERE INDICATED OR AS DIRECTED BY ENGINEER.
- 4. WHERE STRAW BALES ARE USED, TRENCH A MINIMUM OF 4" INTO EXISTING GRADE.
- 5. A MINIMUM OF (2) WOODEN OR METAL STAKES PER STRAW BALE. DRIVE STAKES A MINIMUM OF 12" INTO GROUND.

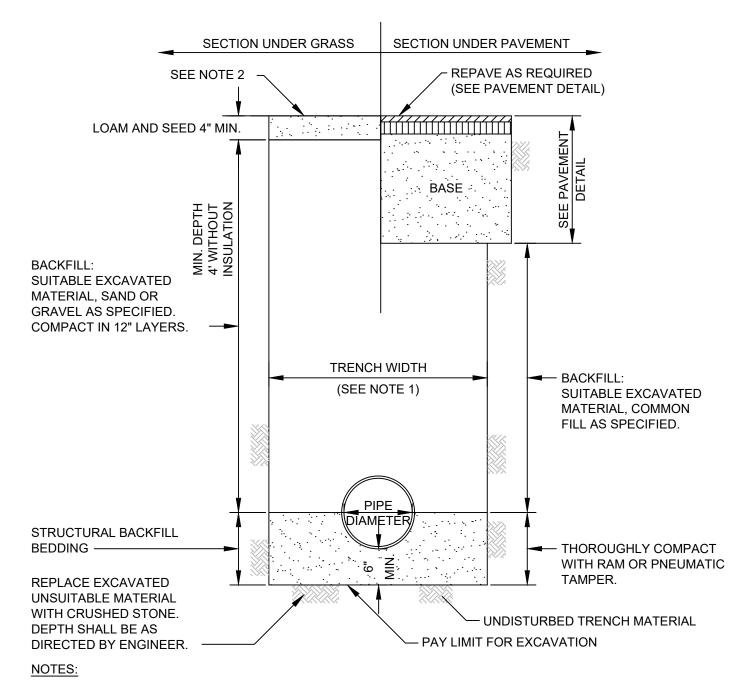
SILT FENCE WITH STRAW BALES DETAIL

	POST SETTING REQUIREMENT												
TYPE OF POST	HOLE DIA. AT TOP*	HOLE DEPTH	POST EMBEDMENT										
LINE	9"	38"	36"										
TERMINAL	12"	38"	36"										

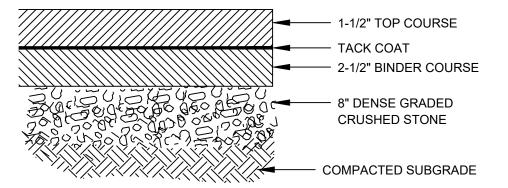

*MIN. HOLE DIAMETER IN SOFT OR LOOSE SOIL SHALL BE 18"


NOTES

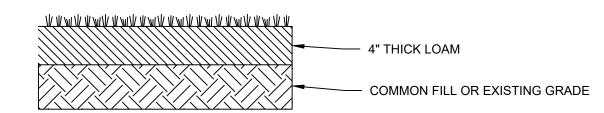
CHAIN LINK FENCE


- 1. POST SPACING: LINE POSTS SHALL BE EVENLY SPACED, CENTER TO CENTER.
- 2. BARBED WIRE ARM WHERE REQUIRED SHALL BE PER CHAIN LINK FENCES AND
- 3. POST FOOTING SHALL HAVE A 1" CROWN FINISH.
- 4. CONTRACTOR SHALL SUBMIT A COMPLETE SHOP DRAWING OF PROPOSED FENCE AND GATE TO ENGINEER FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION.

TYPICAL UTILITY TRENCH



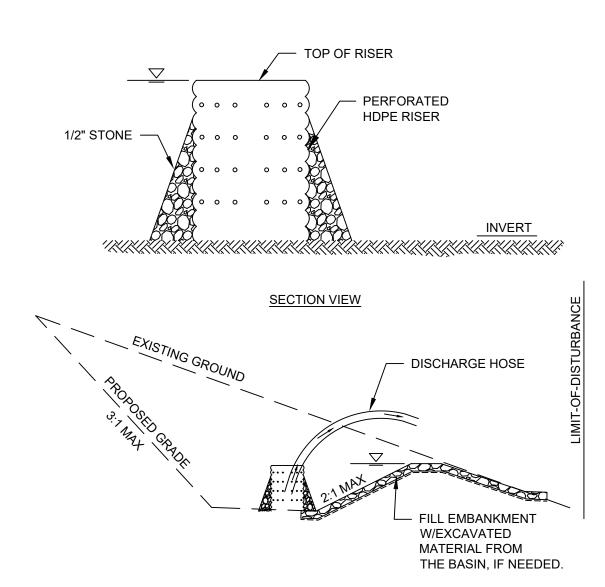
STABILIZED VEHICLE CONSTRUCTION EXIT



1. IN TRENCH DIMENSIONS SHALL BE AS FOLLOWS:

- (a) FOR PIPE LESS THAN OR EQUAL TO 12 INCHES IN DIAMETER, ALLOWABLE TRENCH WIDTH AT PLANE 12 INCHES ABOVE PIPE SHALL BE NO MORE THAN 36 INCHES.
- (b) FOR PIPE GREATER THAN 12 INCHES IN DIAMETER THE ALLOWABLE TRENCH WIDTH SHALL BE EQUAL TO THE PIPE OUTSIDE DIAMETER PLUS 24 INCHES.
- 2. WHERE NO GRASS OCCURS, MATCH EXISTING MATERIALS AND DEPTHS. PLACE A MINIMUM OF 6"
- 3. BEDDING SHALL BE WRAPPED WITH FILTER FABRIC IN LOCATIONS WHERE EXISTING SOIL IS CONSIDERED UNSUITABLE BY THE ENGINEER.

BITUMINOUS CONCRETE PAVEMENT ROAD SURFACE


TYPICAL LOAM AND SEED SECTION

N.T.S.

TYPICAL GRAVEL ROAD RESTORATION SECTION

N.T.S.

LONGITUDINAL SECTION

- NOTES:
 1. TRAP CAPACITY: TEMPORARY SEDIMENT TRAP 134 CY/CONTRIBUTING ACRE AND 50%
- OF THIS VOLUME SHALL BE WET STORAGE.
- TOTAL MIN. STORAGE VOLUME = 1" X CONTRIBUTING AREA.
 SEDIMENT SHALL BE REMOVED WHEN THE BASIN IS 1/2 FULL AT A MINIMUM.
- 4. THE BASIN SHALL REMAIN IN PLACE UNTIL THE SITE HAS BEEN STABILIZED WITH BUILDINGS, PAVEMENT, OR ESTABLISHED VEGETATION, AS APPLICABLE.

NOT FOR CONSTRUCTION

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

	REVISIONS			
REV	DESCRIPTION	DSN	СНК	DATE
ΚΕV	DESCRIPTION	DWN	APP	DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH
ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

CIVIL DETAILS - 1

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054

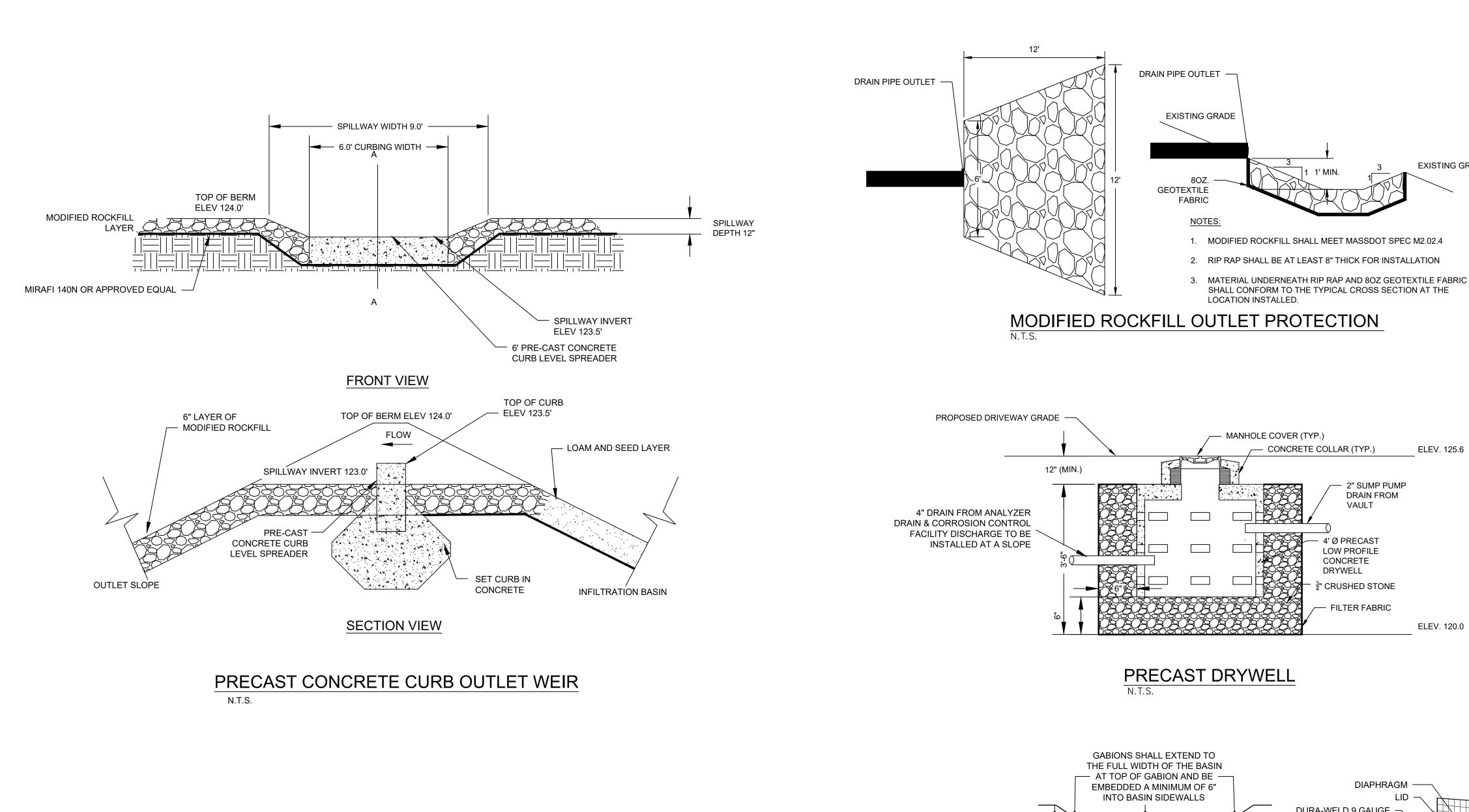
PERMIT REVIEW SET

PROJECT NO. 20233667.002A

ISSUE DATE OCT. 2023

CURRENT REVISION DRAFT

DESIGNED BY MPS


DRAWN BY MPS

CHECKED BY GAA

C-501

TEMPORARY SEDIMENT TRAP (TYP.)

LITY TRENCH

TOP OF BERM

PRECAST CONCRETE

TOP OF CURB ELEV.: 123.5'

SPILLWAY INV ELEV.: 123.0'

STONE-ARMORED EMERGENCY

PLANS). MODIFIED ROCKFILL:

SPILLWAY (AS APPLICABLE, SEE

MASSDOT STD. SPEC NO. M2.02.4-1

STONE ARMORING TO EXTEND

5' BEYOND BOTTOM OF SLOPE

CURB OUTLET WEIR

ELEV.: 124.0'

(SEE DETAIL)

└─ STONE ARMORING TO EXTEND

0.5X LENGTH OF SLOPE (MIN.)

4" LOAM AND

SLOPES (TYP.)

TOP OF BERM

ELEV.: 124.0'

FLOW

--

8" DI DRAIN PIPE

OUTLET ELEV. 122.2'

SEED SIDE

SEDIMENT FOREBAY

(APPROX. 20% OF TOTAL BASIN AREA)

OUTLET PROTECTION

GABION BASKET

UNDISTURBED SOIL

(SEE DETAIL THIS SHEET)

(SEE DETAIL THIS SHEET)

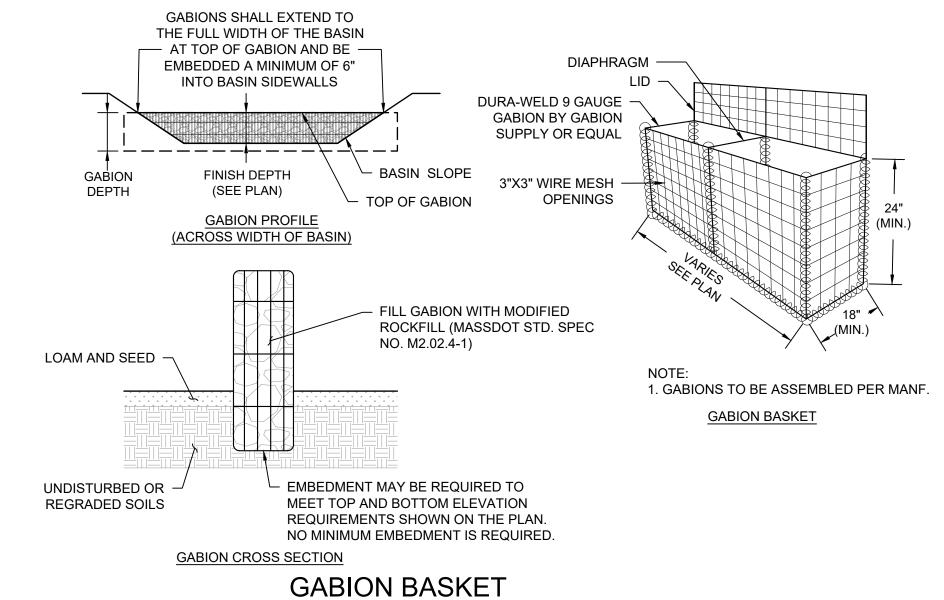
UNCOMPACTED, SCARIFIED,

INFILTRATION BASIN

(APPROX. 80% OF

TOTAL BASIN AREA)

2' MIN.


SEASONAL HIGH

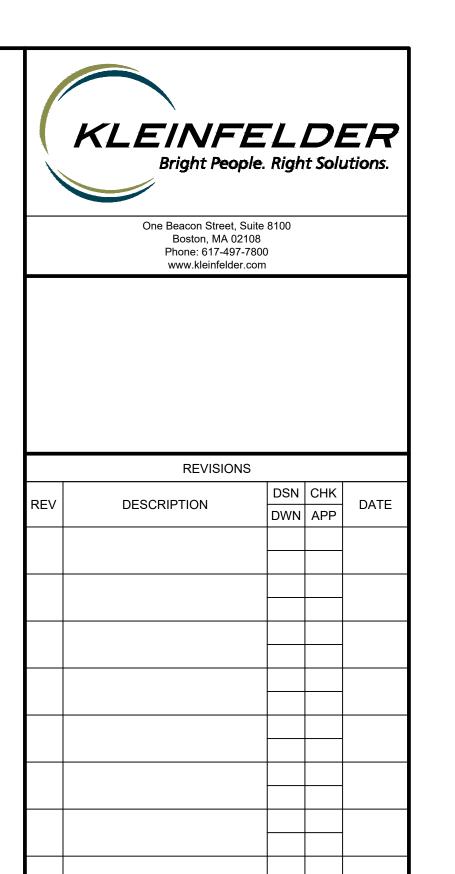
WATER TABLE

BOTTOM OF INFILTRATION BASIN: 122.00'

INFILTRATION BASIN SECTION

TOP OF GABION ELEV.: 124.00'

EXISTING GRADE


ELEV. 125.6

ELEV. 120.0

- 2" SUMP PUMP DRAIN FROM VAULT

LOW PROFILE

CONCRETE DRYWELL

SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH

ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR

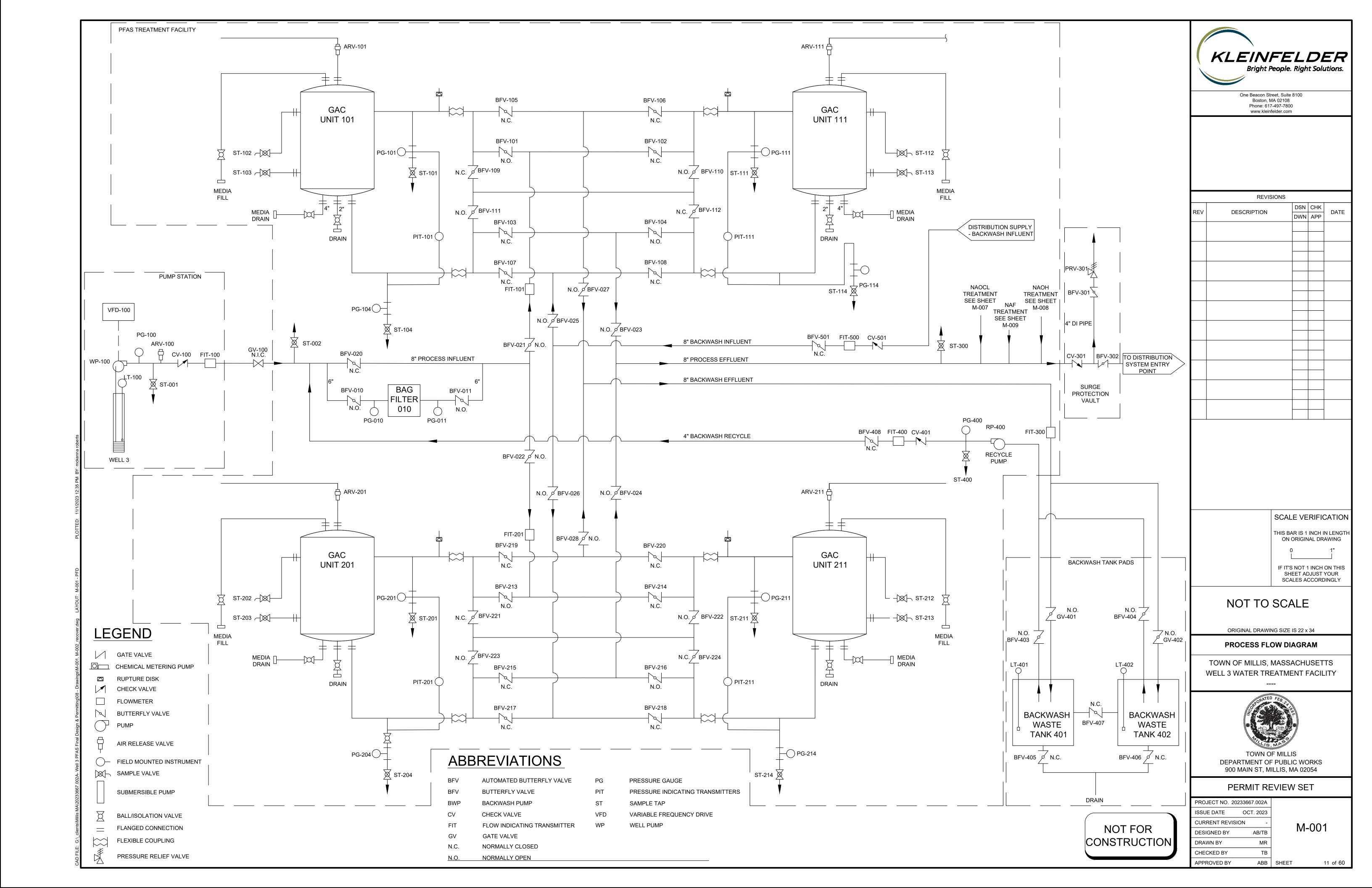
SCALES ACCORDINGLY

CIVIL DETAILS - 2

ORIGINAL DRAWING SIZE IS 22 x 34

TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054


PERMIT REVIEW SET

PROJECT NO. 20233667.002A SSUE DATE OCT. 2023 CURRENT REVISION DRAFT **DESIGNED BY** MPS DRAWN BY CHECKED BY APPROVED BY

NOT FOR

CONSTRUCTION

C-502 GAA SHEET 10 of 60

VALVE SCHEDULE

TAG	SIZE	DESCRIPTION	TYPE	SERVICE	ACTUATOR
BFV-010	6"	BAG FILTER 010 INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-011	6"	BAG FILTER 010 EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-020	8"	BAG FILTER BYPASS	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-021	8"	GAC 101/111 PROCESS INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-022	8"	GAC 201/211 PROCESS INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-023	8"	GAC 101/111 PROCESS EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-024	8"	GAC 201/211 PROCESS EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-025	8"	GAC 101/111 BACKWASH INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-026	8"	GAC 201/211 BACKWASH INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-027	8"	GAC 101/111 BACKWASH EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-028	8"	GAC 201/211 BACKWASH EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-301	4"	SURGE PROTECTION ISOLATION VALVE	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-302	8"	DISTRIBUTION SYSTEM CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-403	<u>4</u> "	BACKWASH TANK 401 EFFLUENT	BUTTERFLY VALVE	OPEN/CLOSE OPEN/CLOSE	MANUAL
BFV-404	4 4"	BACKWASH TANK 401 EFFLUENT		· ·	MANUAL
-	4''		BUTTERFLY VALVE	OPEN/CLOSE	
BFV-405		BACKWASH TANK 401 DRAIN	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-406	4"	BACKWASH TANK 402 DRAIN	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-407	4"	BACKWASH TANK CONNECTION	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-408	4"	RECYCLE CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
BFV-101	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-102	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-103	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-104	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-105	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-106	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-107	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-108	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-109	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-110	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-111	6"	GAC 101 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-112	6"	GAC 111 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-213	6"	GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-214	6"	GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-215	6"	GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-216	6"	GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-217	6"	GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-218	6"	GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-219	6"	GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-220	6"	GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-221	6"	GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-222	6"	GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-223	6"	GAC 201 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-224	6"	GAC 211 CONTROL VALVE	BUTTERFLY VALVE	OPEN/CLOSE	ELECTRIC
BFV-501	8"	DISTRIBUTION SUPPLY BACKWASH INFLUENT CONTR		OPEN/CLOSE	ELECTRIC
ARV-100	1"	WELL 3 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-101	2"	GAC-101 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-111	2"	GAC-111 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-201	2"	GAC-201 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
ARV-211	2"	GAC-211 AIR/VACUUM RELEASE VALVE	AIR/VACUUM RELEASE VALVE	AIR/VAC RELEASE	
CV-100	6"	WELL 3 CHECK VALVE	DOUBLE DOOR CHECK VALVE	CHECK	
CV-301	8"	SWING CHECK VALVE	DOUBLE DOOR CHECK VALVE	CHECK	
CV-401	4"	BACKWASH WASTE PUMP CHECK VALVE	DOUBLE DOOR CHECK VALVE	CHECK	
CV-501	8"	BACKWASH WASTE PUMP CHECK VALVE	DOUBLE DOOR CHECK VALVE	CHECK	
PRV-301	<u> </u>	SURGE PROTECTION		PRESSURE RELEASE	
	12"		GATE VALVE	OPEN/CLOSE	
GV-100	4"	WELL ISOLATION VALVE - NOT IN CONTRACT			MANUAL
GV-401	-	BACKWASH TANK 401 INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL
GV-402	4"	BACKWASH TANK 402 INFLUENT	BUTTERFLY VALVE	OPEN/CLOSE	MANUAL

SAMPLE TAP SCHEDULE

SAMPLE TAP	DIAMETER	DESCRIPTION	TYPE	SERVICE	ACTUATO
ST-001	1"	WELL 3 RAW WATER SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-002	1"	COMBINED INFLUENT SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-101	1/4"	SAMPLE TAP GAC 101 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-102	1/4"	SAMPLE TAP GAC 101 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-103	1/4"	SAMPLE TAP GAC 101 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-104	1/4"	SAMPLE TAP GAC 101 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-111	1/4"	SAMPLE TAP GAC 111 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-112	1/4"	SAMPLE TAP GAC 111 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-113	1/4"	SAMPLE TAP GAC 111 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-114	1/4"	SAMPLE TAP GAC 111 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-201	1/4"	SAMPLE TAP GAC 201 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-202	1/4"	SAMPLE TAP GAC 201 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-203	1/4"	SAMPLE TAP GAC 201 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-204	1/4"	SAMPLE TAP GAC 201 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-211	1/4"	SAMPLE TAP GAC 211 INFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-212	1/4"	SAMPLE TAP GAC 211 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-213	1/4"	SAMPLE TAP GAC 211 INTERMEDIATE COLUMN TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-214	1/4"	SAMPLE TAP GAC 211 EFFLUENT	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-300	1"	PRE-CHEMICAL FEED SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL
ST-400	1"	RECYCLE SUPPLY SAMPLE TAP	SMOOTH NOSE SAMPLE TAP	OPEN/CLOSE	MANUAL

PUMP SCHEDULE

TAG	PUMP NAME	LOCATION	QUANTITY	TYPE
WP-100	WELL 3 MOTOR/PUMP	WELL 3	1	VERTICAL TURBINE
RP-400	BACKWASH PUMP	GAC BUILDING	1	HORIZONTAL END SUCTION
TP-600	NaOCL TRANSFER PUMP	GAC BUILDING	1	MAGNETIC DRIVE
TP-610	NaOH TRANSFER PUMP	GAC BUILDING	1	MAGNETIC DRIVE
CP-601	NaOCL METERING PUMP 1	GAC BUILDING	1	PERISTALTIC
CP-602	NaOCL METERING PUMP 2	GAC BUILDING	1	PERISTALTIC
CP-611	NaOH METERING PUMP 1	GAC BUILDING	1	PERISTALTIC
CP-612	NaOH METERING PUMP 2	GAC BUILDING	1	PERISTALTIC
CP-621	FLUORINE METERING PUMP 1	GAC BUILDING	1	DIAPHRAGM
CP-622	FLUORINE METERING PUMP 2	GAC BUILDING	1	DIAPHRAGM

INSTRUMENTATION SCHEDULE

TAG	SIZE	SERVICE
FIT-100	8"	WELL 3 FLOW METER
FIT-101	6"	GAC 101/111 INFLUENT FLOWMETER
FIT-201	6"	GAC 201/211 INFLUENT FLOWMETER
FIT-300	6"	BACKWASH FLOWMETER
FIT-400	4"	RECYCLE FLOWMETER
FIT-500	6"	DISTRIBUTION SUPPLY BACKWASH INFLUENT FLOWMETER
FIT-620		FLUORINE FLOW METER
LT-100		WELL 3 LEVEL TRANSMITTER
LT-401		BACKWASH WASTE TANK 401 LEVEL TRANSMITTER
LT-402		BACKWASH WASTE TANK 402 LEVEL TRANSMITTER
LIT-603		NaOCL BULK TANK LEVEL INDICATING TRANSMITTER
LIT-604		NaOCL DAY TANK LEVEL INDICATING TRANSMITTER
LIT-613		NaOH BULK TANK LEVEL INDICATING TRANSMITTER
LIT-614		NaOH DAY TANK LEVEL INDICATING TRANSMITTER
PG-010	1"	INLET FOR BAG FILTER 010
PG-011	1"	OUTLET FOR BAG FILTER 010
PG-100	1"	WELL 3 PRESSURE GAUGE
PG-101	1/4"	GAC 101 INFLUENT PRESSURE GAUGE
PG-104	1/4"	GAC 101 EFFLUENT PRESSURE GAUGE
PIT-101	1/4"	GAC 101 DIFFERENTIAL PRESSURE TRANSDUCER
PG-111	1/4"	GAC 111 INFLUENT PRESSURE GAUGE
PG-114	1/4"	GAC 111 EFFLUENT PRESSURE GAUGE
PIT-111	1/4"	GAC 111 DIFFERENTIAL PRESSURE TRANSDUCER
PG-201	1/4"	GAC 201 INFLUENT PRESSURE GAUGE
PG-204	1/4"	GAC 201 EFFLUENT PRESSURE GAUGE
PIT-201	1/4"	GAC 201 DIFFERENTIAL PRESSURE TRANSDUCER
PG-211	1/4"	GAC 211 INFLUENT PRESSURE GAUGE
PG-214	1/4"	GAC 211 EFFLUENT PRESSURE GAUGE
PIT-211	1"	GAC 211 DIFFERENTIAL PRESSURE TRANSDUCER
PG-400	1/4"	RECYCLE SUPPLY PRESSURE GAUGE
PG-600	1/4"	NaOCL PRESSURE GAUGE
PG-610	1/4"	NaOH PRESSURE GAUGE

VALVE OPERATION SCHEDULE

		Train 1												Train 2										BW Supply	
	ABV-101	ABV-102	ABV-103	ABV-104	ABV-105	ABV-106	ABV-107	ABV-108	ABV-109	ABV-110	ABV-111	ABV-112	ABV-213	ABV-214	ABV-215	ABV-216	ABV-217	ABV-218	ABV-219	ABV-220	ABV-221	ABV-222	ABV-223	ABV-224	ABV-051
Series Flow 101 to 111 & 201 to 211	Open	Closed	Closed	Open	Closed	Closed	Closed	Closed	Closed	Open	Open	Closed	Open	Closed	Closed	Open	Closed	Closed	Closed	Closed	Closed	Open	Open	Closed	Closed
Series Flow 111 to 101 & 211 to 201	Closed	Open	Open	Closed	Closed	Closed	Closed	Closed	Open	Closed	Closed	Open	Closed	Open	Open	Closed	Closed	Closed	Closed	closed	Open	Closed	Closed	Open	Closed
Backwash 101	Closed	Closed	Closed	Closed	Open	Closed	Open	Closed	Open																
Backwash 111	Closed	Closed	Closed	Closed	Closed	Open	Closed	Open	Closed	Open															
Filter To Waste 101	Open	Closed	Closed	Closed	Closed	Open	Closed	Closed	Closed	Open	Open	Closed	Closed												
Filter to Waste 111	Closed	Open	Closed	Closed	Open	Closed	Closed	Closed	Open	Closed	Closed	Open	Closed	Closed											
Backwash 201	Closed	Open	Closed	Open	Closed	Closed	Closed	Closed	Closed	Open															
Backwash 211	Closed	Open	Closed	Open	Closed	Closed	Closed	Closed	Open																
Filter To Waste 201	Closed	Open	Closed	Closed	Closed	Closed	Closed	Closed	Open	Closed	Open	Open	Closed	Closed											
Filter to Waste 211	Closed	Open	Closed	Closed	Closed	Closed	Open	Closed	Open	Closed	Closed	Open	Closed												

NOT FOR CONSTRUCTION

REV	DESCRIPTION		CHK	DATE
KEV	DESCRIPTION	DWN	APP	DATE

REVISIONS

SCALE VER	IFICATION
THIS BAR IS 1 IN ON ORIGINAL	CH IN LENGTH . DRAWING
	411

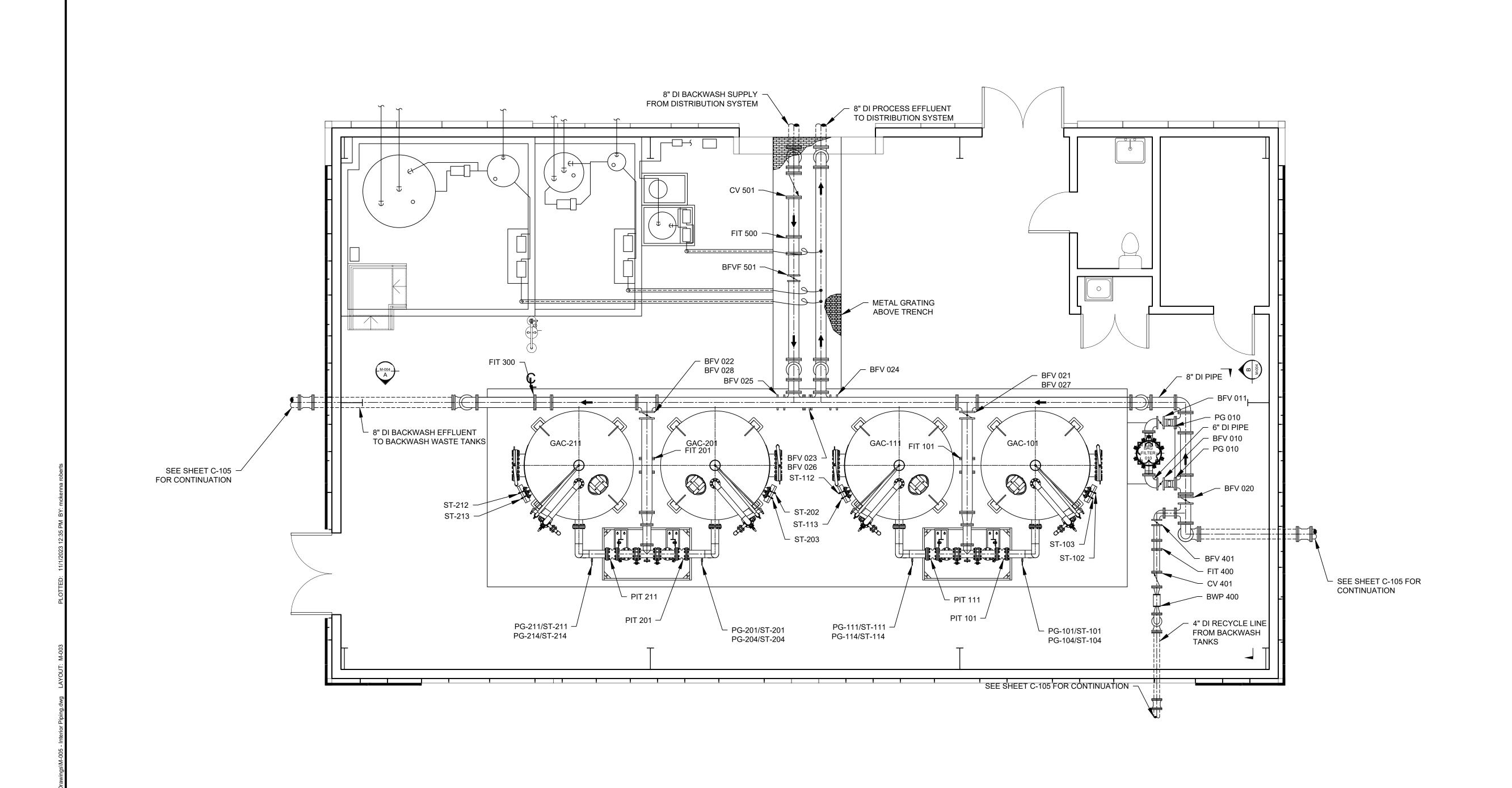
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

PROCESS EQUIPMENT SCHEDULE

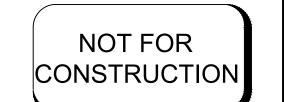
TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054


PERMIT REVIEW SET

PROJECT NO. 20233667.002A
ISSUE DATE OCT. 2023
CURRENT REVISION DESIGNED BY ABB
DRAWN BY MR
CHECKED BY TB
APPROVED BY ABB SHEET

M-002


12 of 60

NOTE: BFVs 010, 011, 012, 013, 022, 023 SHALL REMAIN OPEN AND BFVs 020, 030 SHALL REMAIN CLOSED UNDER NORMAL OPERATIONS

PLAN
SCALE: 1" = 4'

NOTES:
1. CONTRACTOR SHALL INSTALL PIPE SUPPORTS IN ACCORDANCE WITH SPECIFICATION SECTION 15056.

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

REVISIONS

Signed By:

REV DESCRIPTION | DSN | CHK | DATE |

SCALE VERIFICATION

0 4 8 12

SCALE: 1" = 4' SCALE IN FEET

PROCESS FLOOR PLAN

ORIGINAL DRAWING SIZE IS 22 x 34

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY

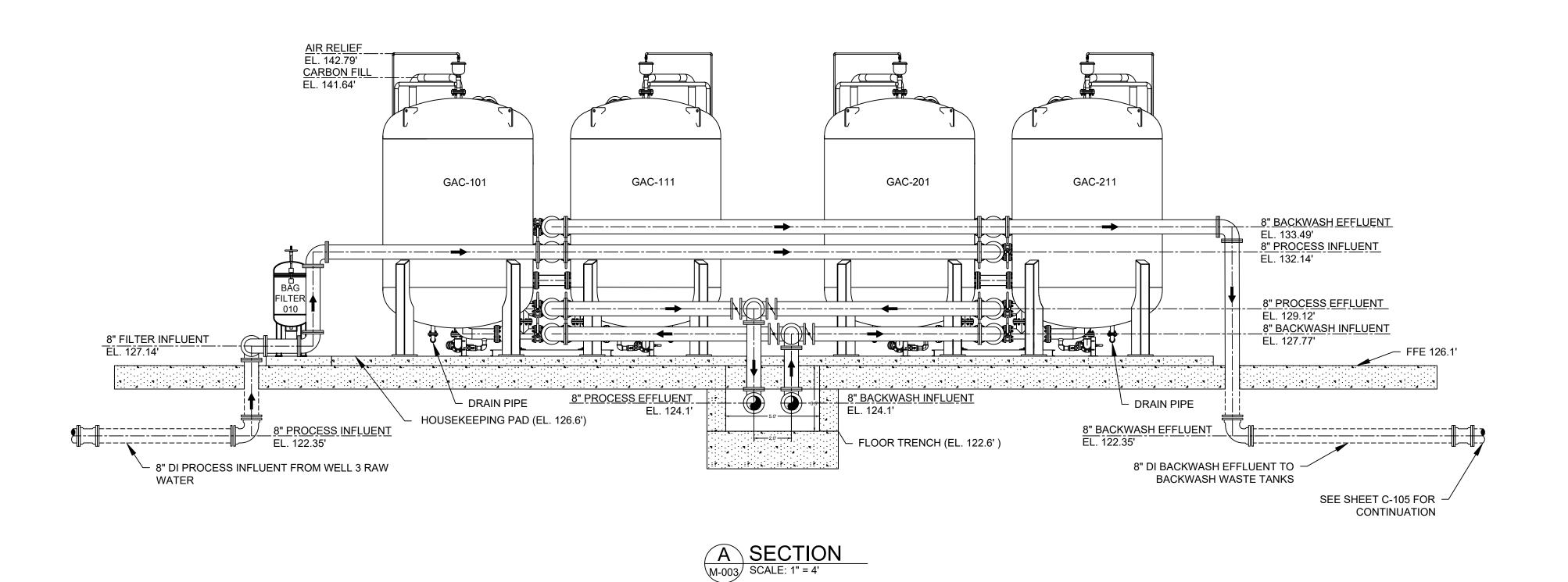
TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054

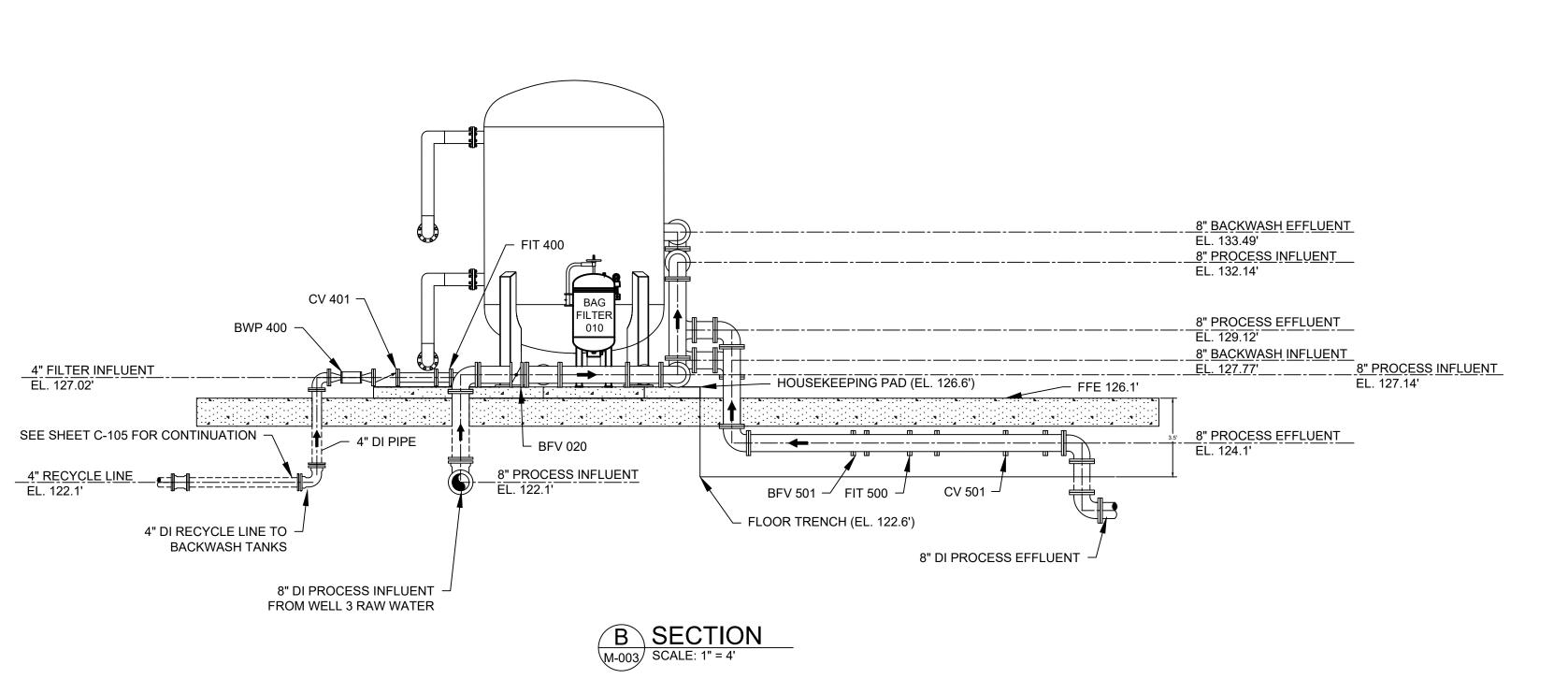
PERMIT REVIEW SET

PROJECT NO. 20233667.002A

ISSUE DATE OCT. 2023

CURRENT REVISION
DESIGNED BY TB


DRAWN BY PF


CHECKED BY TB

APPROVED BY TB SHEET

M-003

13 of 60

NOTES:
1. CONTRACTOR SHALL INSTALL PIPE SUPPORTS IN ACCORDANCE WITH SPECIFICATION SECTION 15056.

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

#

Signed By:

REV DESCRIPTION

DSN CHK
DWN APP

DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

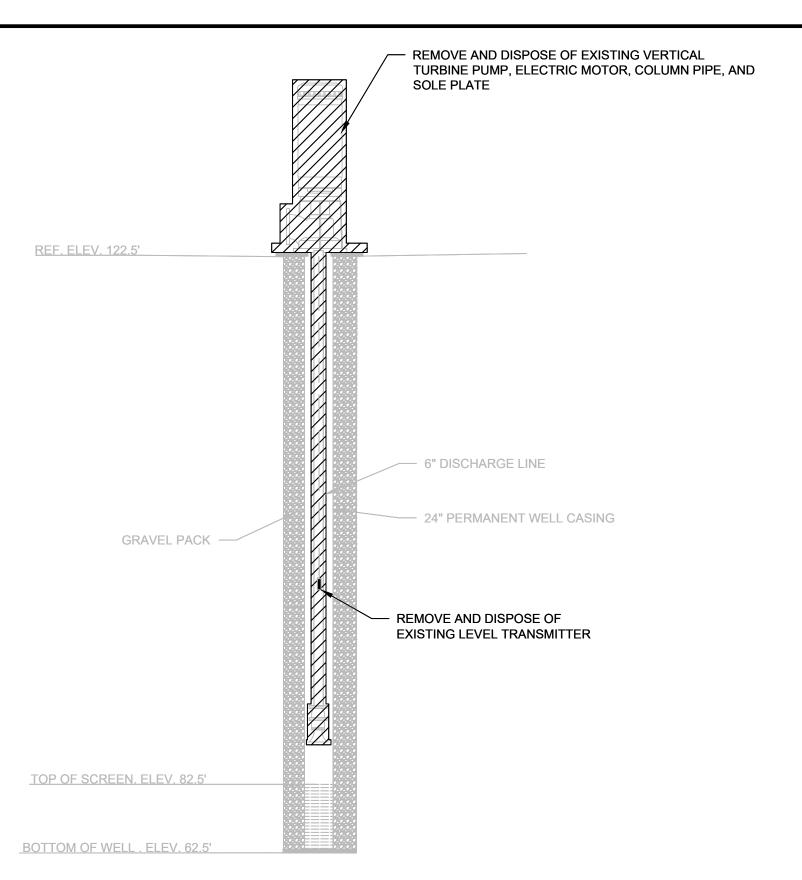
0 4 8

SCALE: 1" = 4' SCALE IN FEE

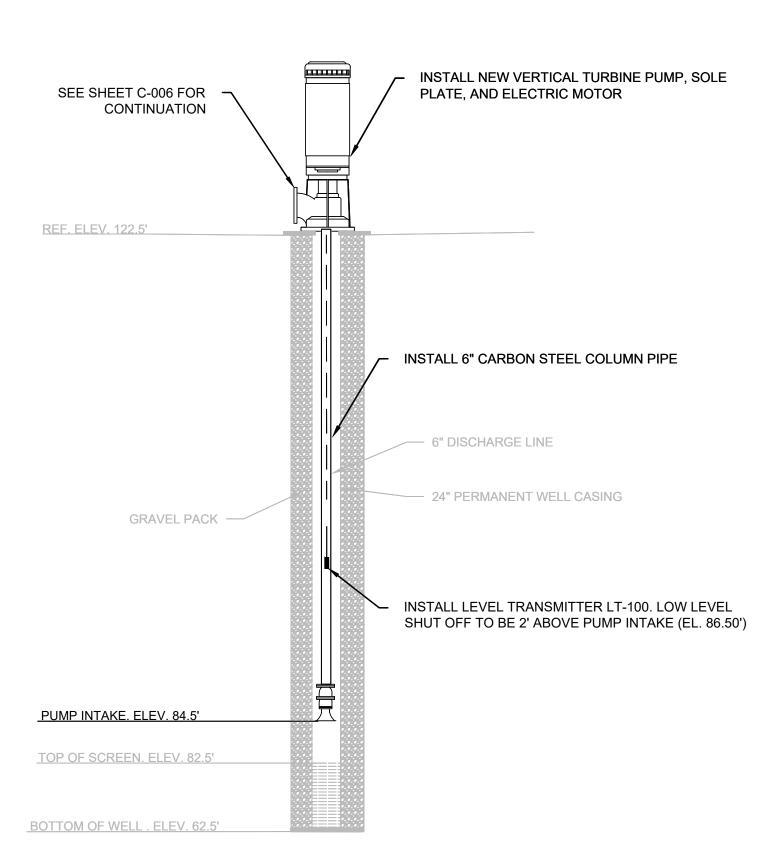
PROCESS SECTION

ORIGINAL DRAWING SIZE IS 22 x 34

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY

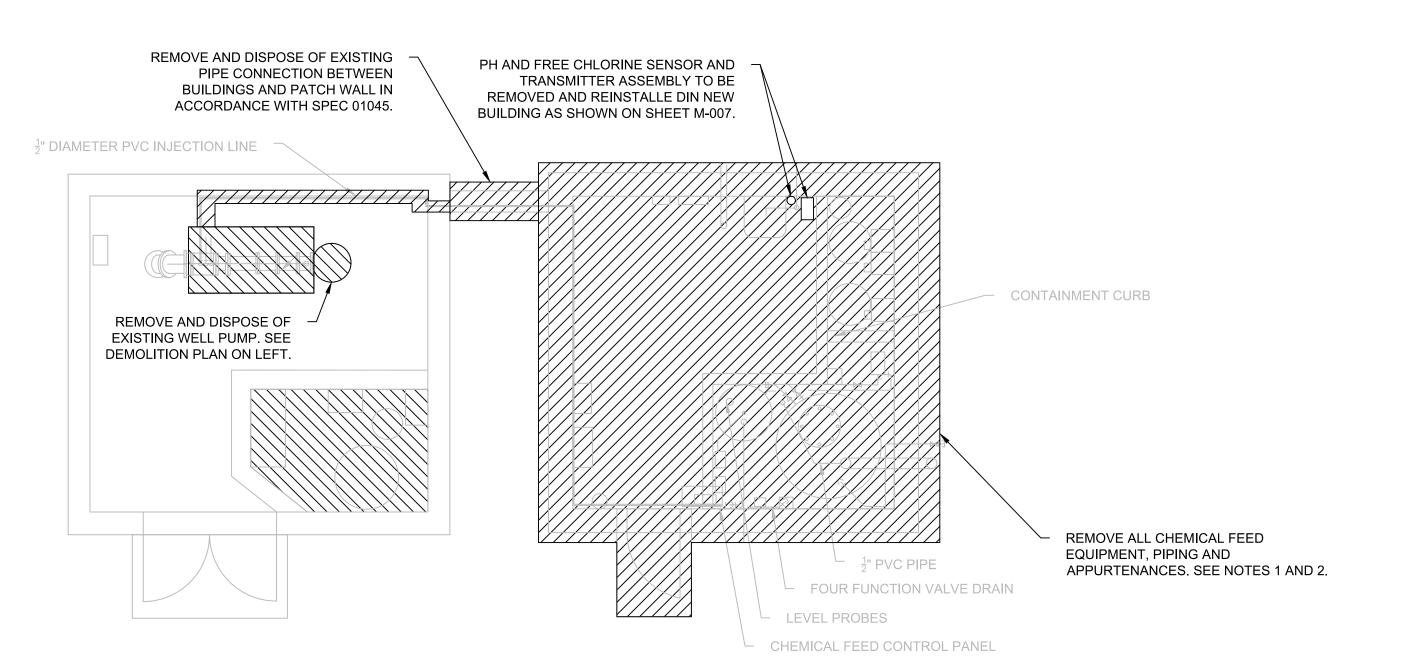

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054

PERMIT REVIEW SET


	PROJECT NO. 20	233667.002A
	ISSUE DATE	OCT. 2023
NOTEOD	CURRENT REVISI	ION -
NOT FOR	DESIGNED BY	ТВ
CONSTRUCTION	DRAWN BY	PF
	CHECKED BY	ТВ
	APPROVED BY	

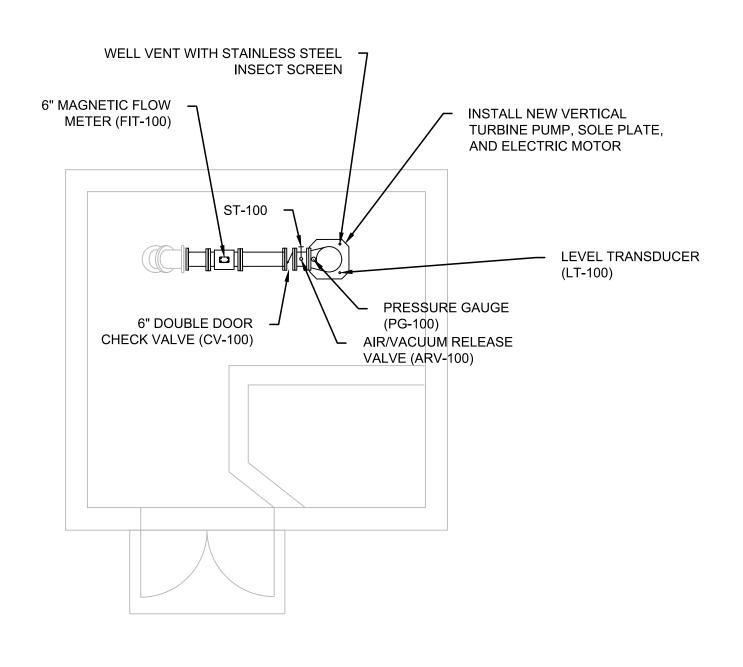
M-004

SHEET 14 of 60


WELL 3 DEMOLITION PLAN

WELL 3 MODIFICATION PLAN
SCALE: NTS

1) CLEAN, REDEVELOP, AND INSPECT WELLS PRIOR TO INSTALLING PUMPS. REFER TO SPECIFICATION SECTION 02673.


- 2) DISINFECT WELL SCREEN AND APPURTENANCES PRIOR TO PUMP INSTALLATION. REFER TO SPECIFICATION SECTION 02673.
- 3) PAINTING FSB TO COAT ALL PIPES IN ACCORDANCE WITH SPECIFICATION SECTION 09960.

DEMOLITION PLAN

MODIFICATION PLAN

SCALE: SCALE: 1" = 4"

1. EXISTING CHEMICAL FEED ITEMS TO BE REMOVED AND DISPOSED OF INCLUDED BUT ARE NOT LIMITED TO LEVEL PROBES, A CHEMICAL FEED CONTROL PANEL, A FOUR FUNCTION VALVE DRAIN, PVC PIPING, A FLOW METER, A CHECK VALVE, A SAMPLE TAP, COPPER PIPING, CHEMICAL INJECTION NOZZLES, TUBING, APPURTENANCES, CONTROL PANELS, A 320 GAL SODIUM HYPOCHLORITE BULK TANK, A 15 GAL SODIUM HYPOCHLORITE DAY TANK, A 300 GAL PE SODIUM HYDROXIDE DAY TANK, AN EXISTING 1000 GAL FRP SODIUM HYDROXIDE BULK TANK, A 32 GAL PE SODIUM FLUORIDE STORAGE CONTAINER, AND A 20 GAL SODIUM FLUORIDE SATURATOR.

- 2. ALL CHEMICAL FEED PUMPS AND CHEMICAL TRANSFER PUMPS SHALL BE REMOVED AND RETURNED TO OWNER.
- 3. CONTRACTOR SHALL FIELD VERIFY EXISTING EQUIPMENT.

KLEINFELDER Bright People. Right Solutions.

> One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

Signed By: REVISIONS

DSN CHK
DWN APP DESCRIPTION

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34 PUMP AND EXISTING BUILDING **MODIFICATIONS**

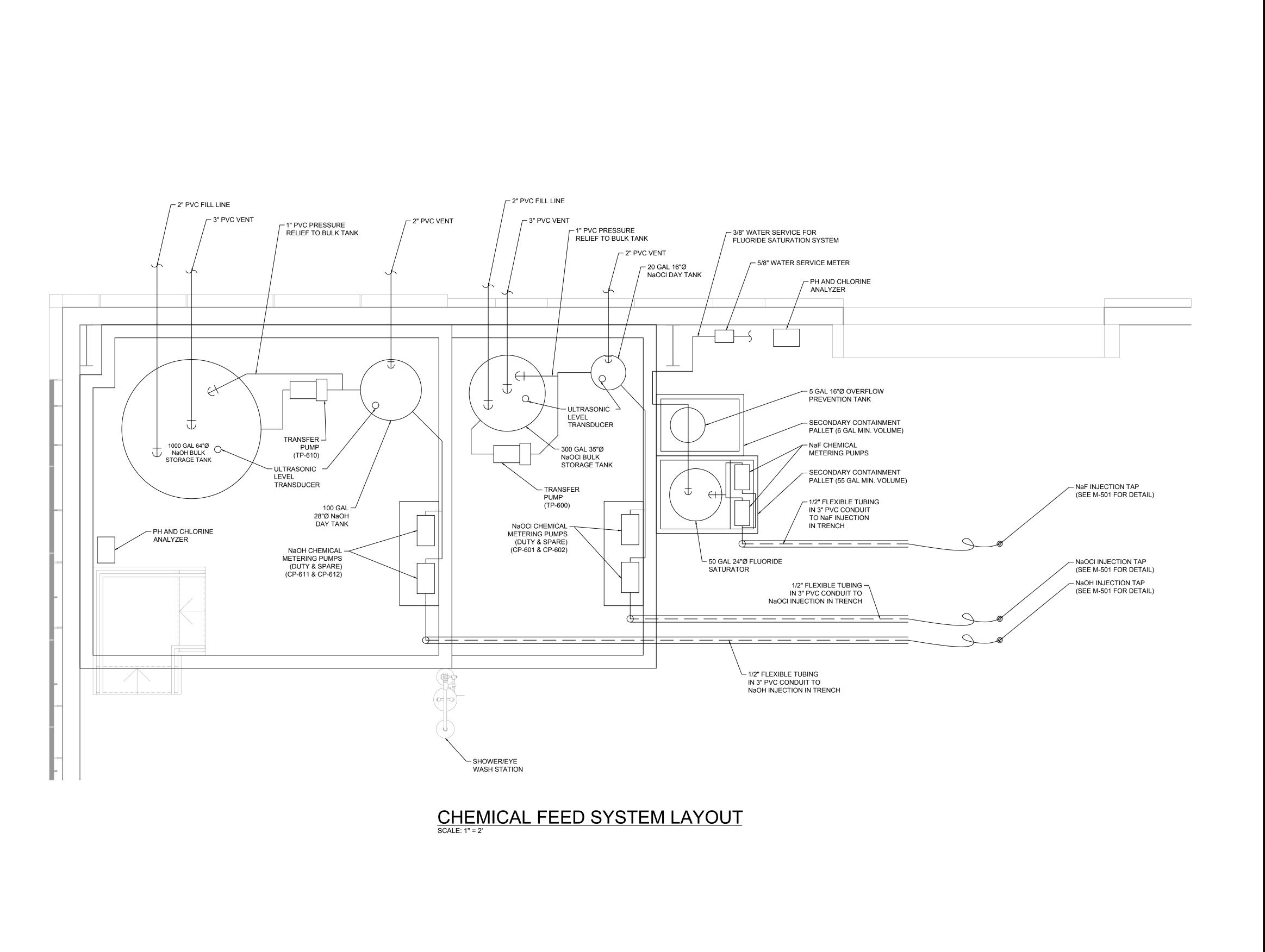
TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054

PERMIT REVIEW SET

ABB SHEET

PROJECT NO. 20233667.002A SSUE DATE OCT. 2023 CURRENT REVISION **DESIGNED BY** DRAWN BY CHECKED BY


APPROVED BY

M-005

15 of 60

NOT FOR

CONSTRUCTION

KLEINFELDER
Bright People. Right Solutions.

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

REVISIONS

REV	DESCRIPTION	DSN	CHK	DATE
1\L V	BEGORII HON	DWN	APP	DATE
		l	I	I

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH
ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

0 2 4 6

SCALE: 1" = 2' SCALE IN FEET

ORIGINAL DRAWING SIZE IS 22 x 34

CHEMICAL FEED SYSTEM LAYOUT

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054

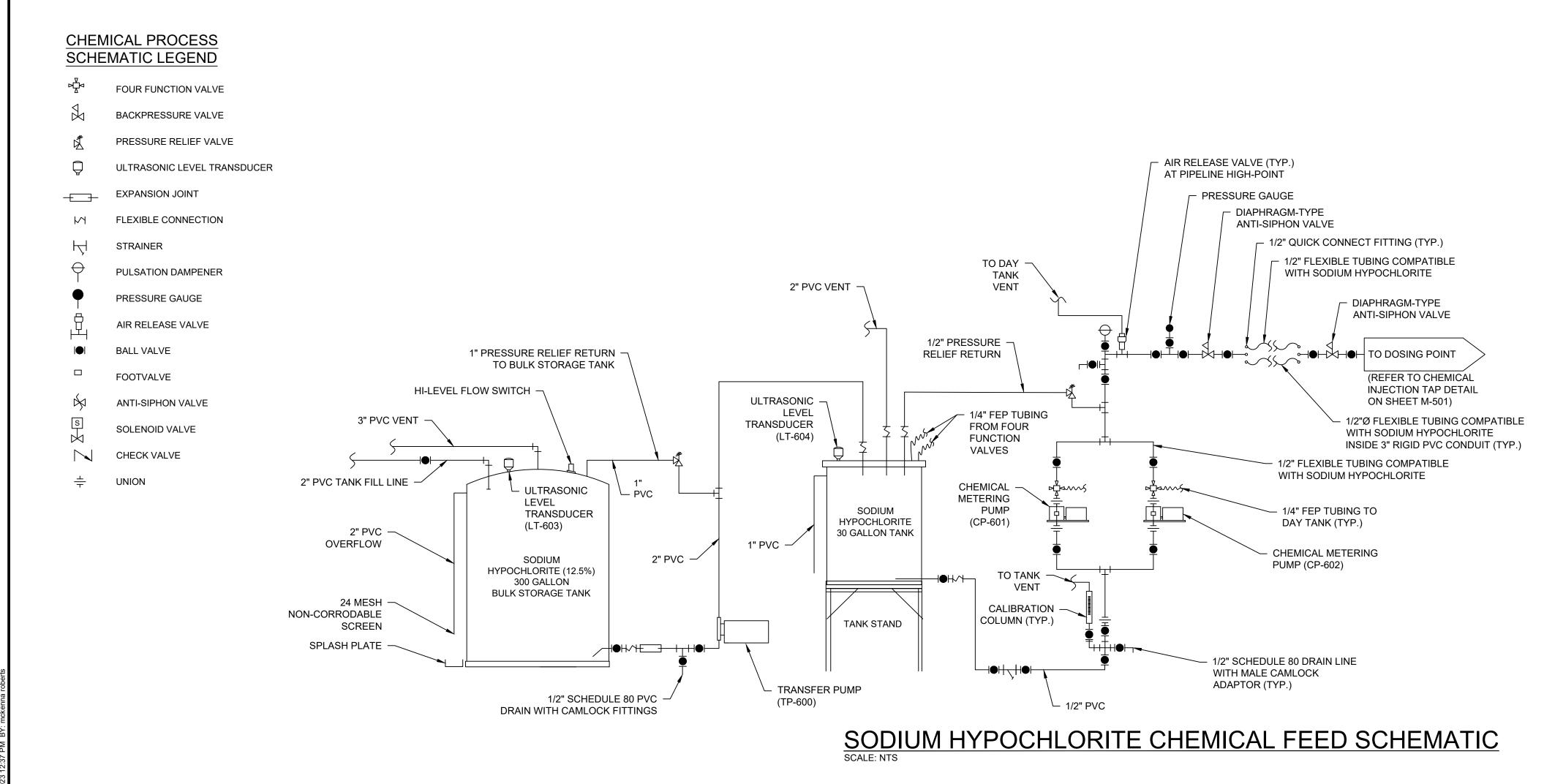
PERMIT REVIEW SET

PROJECT NO. 20233667.002A

ISSUE DATE OCT. 2023

CURRENT REVISION
DESIGNED BY AB/GAA

DRAWN BY MPS


CHECKED BY TB

APPROVED BY TB SHEET

M-006

16 of 62

NOT FOR CONSTRUCTION

1" PRESSURE RELIEF

CONCRETE TANK PAD-

TANK DIAMETER PLUS 4", ⁻ PAD TO BE SQUARE

DIMENSIONS TO BE

3" VENT -

MANWAY -

RETURN

PLAN

NOTE: SEE SCHEMATICS FOR SIZES AND CONFIGURATIONS

ULTRASONIC

TRANSDUCER

FLOAT SWITCH

2" OVERFLOW TO WITHIN 18" -OF FLOOR

DRAIN TO

2" BALL VALVE -

CONTAINMENT -AREA

CHEMICAL

SODIUM HYPOCHLORITE

(NaOCI)

NOTE: FOR NaOCI TANK ONLY

NOTES:

3" VENT

2" FILL 🦳

- RELIEF FROM

FEED SYSTEM

A-A

STORAGE

300 GAL.

SODIUM HYPOCHLORITE BULK CHEMICAL STORAGE TANK DETAIL

TANK SIZE

ULTRASONIC

TRANSDUCER

/_ HI-LEVEL FLOAT SWITCH

B-B

TRANSFER PUMP - SUCTION LINE

(SIZE VARIES)

ULTRASONIC LEVEL

1" PRESSURE - RELIEF FROM FEED SYSTEM

FLOAT SWITCH

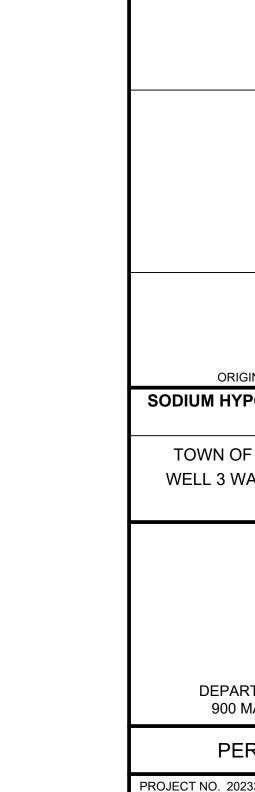
_6" CONCRETE PAD WITH 1/4" THICK NEOPRENE PAD UNDER TANK (TYP)

TRANSDUCER

3" VENT-

- 1. FLOODED SUCTION REQUIRED.
- VENT GAS PRIOR TO METERING PUMPS.
- SLOPE SUCTION LINE DOWN FROM TANK TO METERING PUMP SO GAS CANNOT ENTER PUMP HEAD.
- 4. ALL BALL VALVES USED FOR SODIUM HYPOCHLORITE SHALL BE
- 1/4 TURN TRUE UNION VENTED BALL VALVES.

5. BACKPRESSURE VALVES SHALL BE INSTALLED IN SERIES PER


- 6. CAMLOCK FITTINGS SHALL BE FRP.
- 7. ALL FITTINGS AND ACCESSORIES SHALL BE TRUE UNION.

MASSDEP GUIDELINES FOR SODIUM HYPOCHLORITE.

- 8. $\frac{1}{2}$ " FLEXIBLE TUBING SHALL EXTEND AT LEAST 2' FROM START AND END OF 3" RIGID PVC CHEMICAL CONDUIT.
- 9. CHEMICAL METERING PUMPS SHALL INCLUDE AN INTERLOCK SYSTEM THAT IS HARD WIRED OR USE A TWIST TYPE PLUG AND RECEPTACLE WITH PILOT LIGHT "ON OR ENERGIZED"
- 10. MOUNTING PANELS FOR ALL CHEMICAL FEED EQUIPMENT, INCLUDING BUT LIMITED TO PUMPS, PIPING, CALIBRATION COLUMN, SHALL BE CHEMICALLY COMPATIBLE WITH SODIUM HYPOCHLORITE.

INDICATOR TO HELP PREVENT OVERFEEDS.

- 11. SODIUM HYPOCHLORITE CHEMICAL FEED SYSTEM SHALL BE INSTALLED ACCORDING TO THE REQUIREMENTS PROVIDED IN THE MASSDEP CHEMICAL FEED SYSTEM CHECKLIST AND/OR ALL MASSDEP GUIDELINES AND REGULATIONS.
- 12. CONTRACTOR TO SUPPLY INITIAL 300 GALLON FILL OF SODIUM HYPOCHLORITE (12.5%) BUNK TANK PRIOR TO START-UP AND COMMISSIONING.

NOT FOR CONSTRUCTION

KLEINFELDER

One Beacon Street, Suite 8100 Boston, MA 02108

Phone: 617-497-7800 www.kleinfelder.com

REVISIONS

DESCRIPTION

DSN CHK
DWN APP

Bright People. Right Solutions.

THIS BAR IS 1 INCH IN LENGTI ON ORIGINAL DRAWING

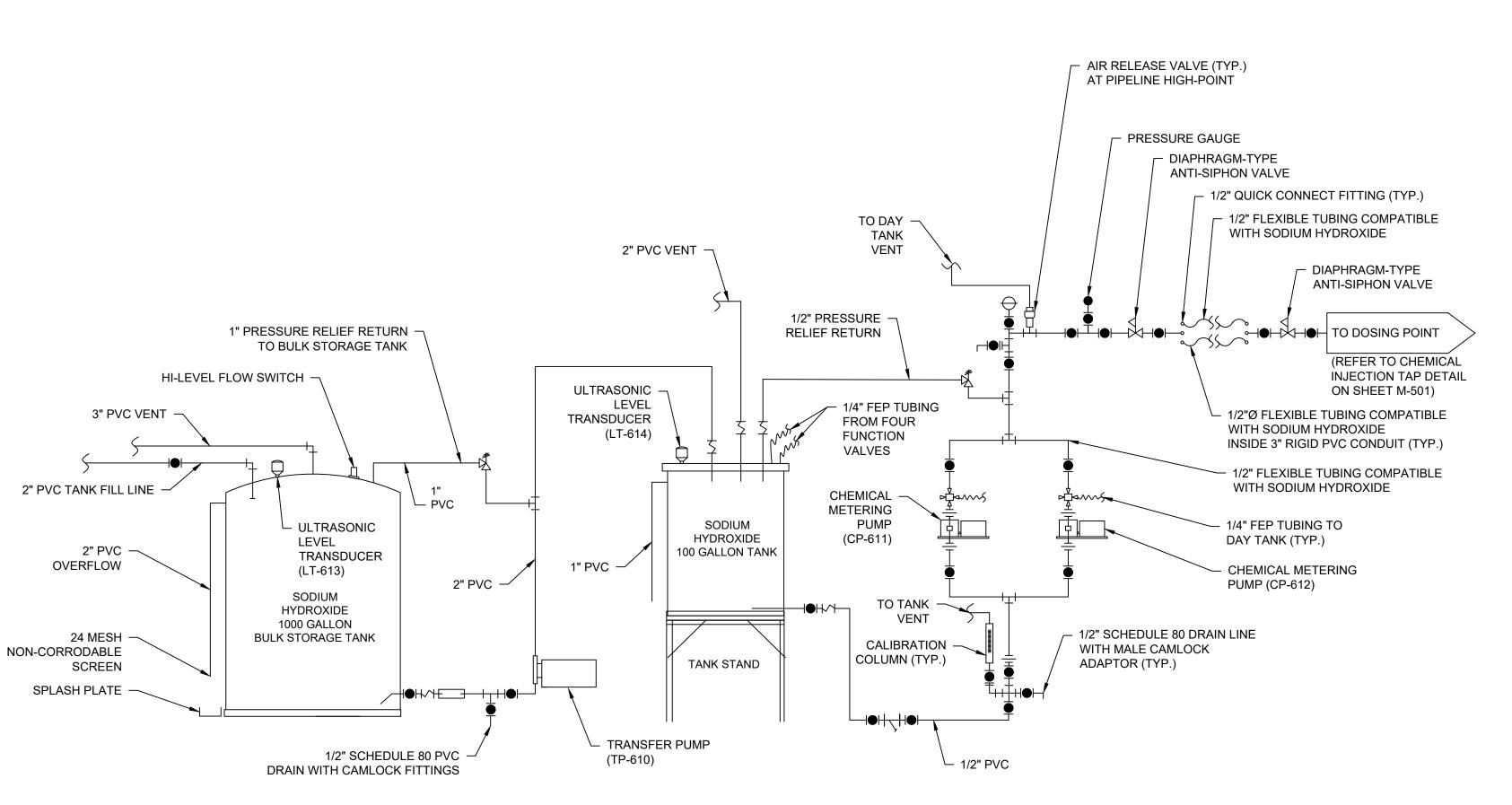
SCALE VERIFICATION

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

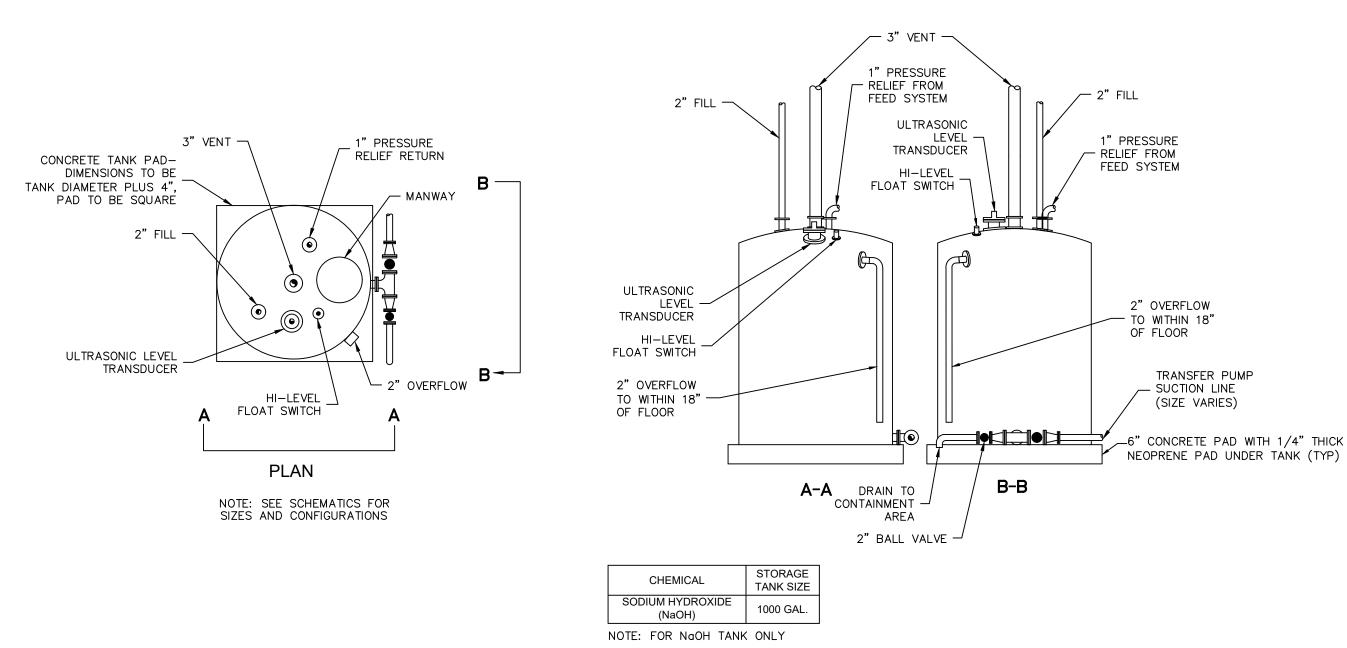
ORIGINAL DRAWING SIZE IS 22 x 34

SODIUM HYPOCHLORITE CHEMICAL FEED SCHEMATIC

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY


TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054

PERMIT REVIEW SET


•	
PROJECT NO.	20233667.002A
ISSUE DATE	OCT. 2023
CURRENT REV	ISION -
DESIGNED BY	AB/GAA
DRAWN BY	MPS
CHECKED BY	ТВ
APPROVED BY	ТВ

M-007

SHEET 17

SODIUM HYDROXIDE CHEMICAL FEED SCHEMATIC SCALE: NTS

SODIUM HYDROXIDE BULK CHEMICAL STORAGE TANK DETAIL

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

REVISIONS DESCRIPTION

NOTES:

FLOODED SUCTION REQUIRED.

2. VENT GAS PRIOR TO METERING PUMPS.

ELEVATION OF METERING PUMPS.

5. CAMLOCK FITTINGS SHALL BE FRP.

TO HELP PREVENT OVERFEEDS.

HYDROXIDE.

COMMISSIONING.

3. ELEVATION OF BOTTOM OF DAY TANKS SHOULD MATCH THE

4. BACKPRESSURE VALVES SHALL BE INSTALLED IN SERIES PER

7. ½" FLEXIBLE TUBING SHALL EXTEND AT LEAST 2' FROM START AND

SYSTEM THAT IS HARD WIRED OR USE A TWIST TYPE PLUG AND

RECEPTACLE WITH PILOT LIGHT "ON OR ENERGIZED" INDICATOR

9. CHEMICAL METERING PUMPS SHALL INCLUDE AN INTERLOCK

10. MOUNTING PANELS FOR ALL CHEMICAL FEED EQUIPMENT,

11. SODIUM HYDROXIDE CHEMICAL FEED SYSTEM SHALL BE

HYDROXIDE BUNK TANK PRIOR TO START-UP AND

MASSDEP GUIDELINES AND REGULATIONS.

INCLUDING BUT LIMITED TO PUMPS, PIPING, CALIBRATION

COLUMN, SHALL BE CHEMICALLY COMPATIBLE WITH SODIUM

INSTALLED ACCORDING TO THE REQUIREMENTS PROVIDED IN THE MASSDEP CHEMICAL FEED SYSTEM CHECKLIST AND/OR ALL

12. CONTRACTOR TO SUPPLY INITIAL 1000 GALLON FILL OF SODIUM

MASSDEP GUIDELINES FOR SODIUM HYDROXIDE.

END OF 3" RIGID PVC CHEMICAL CONDUIT.

6. ALL FITTINGS AND ACCESSORIES SHALL BE TRUE UNION.

DSN CHK
DWN APP
DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTI ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

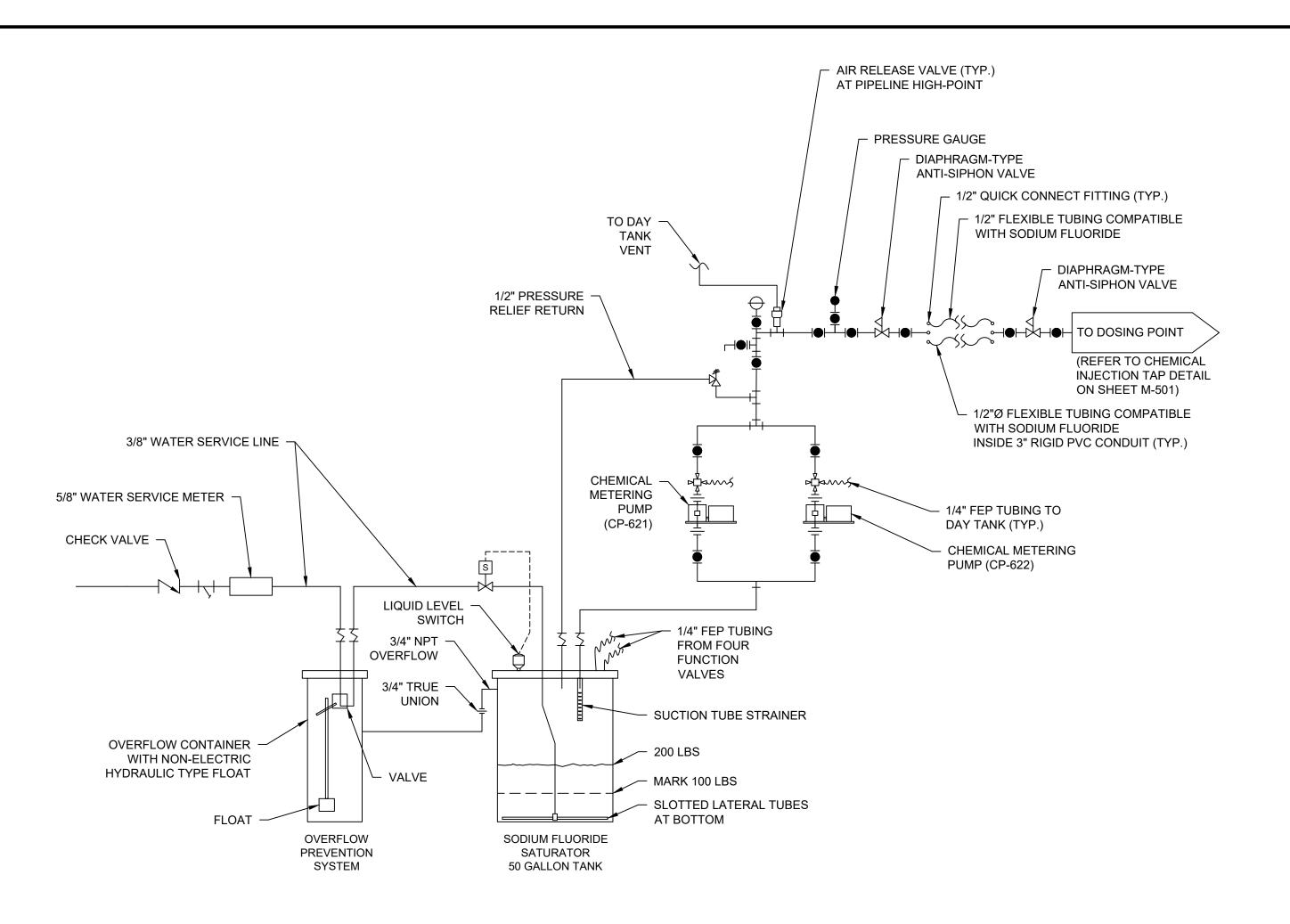
ORIGINAL DRAWING SIZE IS 22 x 34

SODIUM HYDROXIDE CHEMICAL FEED **SCHEMATIC**

TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054

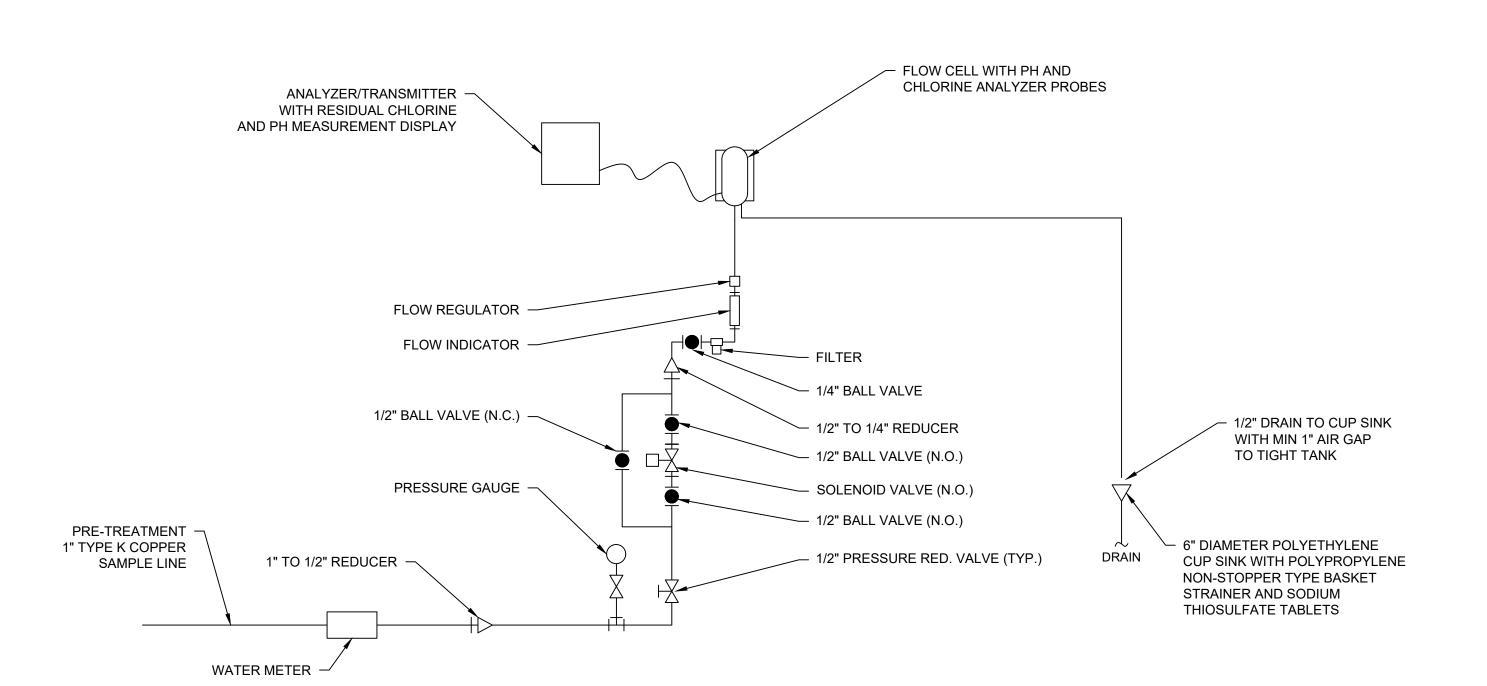
PERMIT REVIEW SET


PROJECT NO. 20233667.002A SSUE DATE OCT. 2023 CURRENT REVISION DESIGNED BY AB/GAA DRAWN BY CHECKED BY APPROVED BY

NOT FOR

CONSTRUCTION

M-008


TB SHEET 18 of 60

OTES:

- 1. COMPLETE FLUORIDE SYSTEM SHALL BE PROVIDED BY A SINGLE MANUFACTURER
- 2. FLUORIDE SUCTION LINE SHALL BE AS SHORT AS POSSIBLE AND SLOPED
- 3. CHEMICAL METERING PUMP SHALL BE MOUNTED ABOVE THE SATURATOR UNIT.
- 4. CAMLOCK FITTINGS SHALL BE FRP.
- 5. ALL FITTINGS AND ACCESSORIES SHALL BE TRUE UNION.
- 6. $\frac{1}{2}$ " FLEXIBLE TUBING SHALL EXTEND AT LEAST 2' FROM START AND END OF 6" RIGID PVC CHEMICAL CONTAINMENT.
- 7. CONTRACTOR SHALL PROVIDE SPARE PARTS AVAILABLE FOR ALL FEEDERS, INCLUDING BUT NOT LIMITED TO ANTI-SIPHON VALVES, BELTS, TUBING, CORPORATION COCK, AND INJECTION NOZZLE. DUTY & SPARE CHEMICAL FEED LINES SHALL BE CONTAINED TOGETHER IN THE SAME CONTAINMENT PIPE TO EACH APPLICATION POINT.
- 8. MOUNTING PANELS FOR ALL CHEMICAL FEED EQUIPMENT, INCLUDING BUT LIMITED TO PUMPS, PIPING, CALIBRATION COLUMN, SHALL BE CHEMICALLY COMPATIBLE WITH SODIUM FLUORIDE.
- 9. SODIUM FLUORIDE CHEMICAL FEED SYSTEM SHALL BE INSTALLED ACCORDING TO THE REQUIREMENTS PROVIDED IN THE MASSDEP CHEMICAL FEED SYSTEM CHECKLIST AND/OR ALL MASSDEP GUIDELINES AND REGULATIONS.
- 12. CONTRACTOR TO SUPPLY INITIAL FILL OF SODIUM FLUORIDE SATURATOR CHEMICALS FOR OPERATION PRIOR TO START-UP AND COMMISSIONING.

SODIUM FLUORIDE CHEMICAL FEED SCHEMATIC SCALE: NTS

RESIDUAL CHLORINE/PH ANALYZERS
SCALE: N.T.S.

NOT FOR CONSTRUCTION

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

	REVISIONS			
REV	DESCRIPTION	DSN	СНК	DATE
_V	DESCRIPTION	DWN	APP	DATE

SCALE VERIFICATION

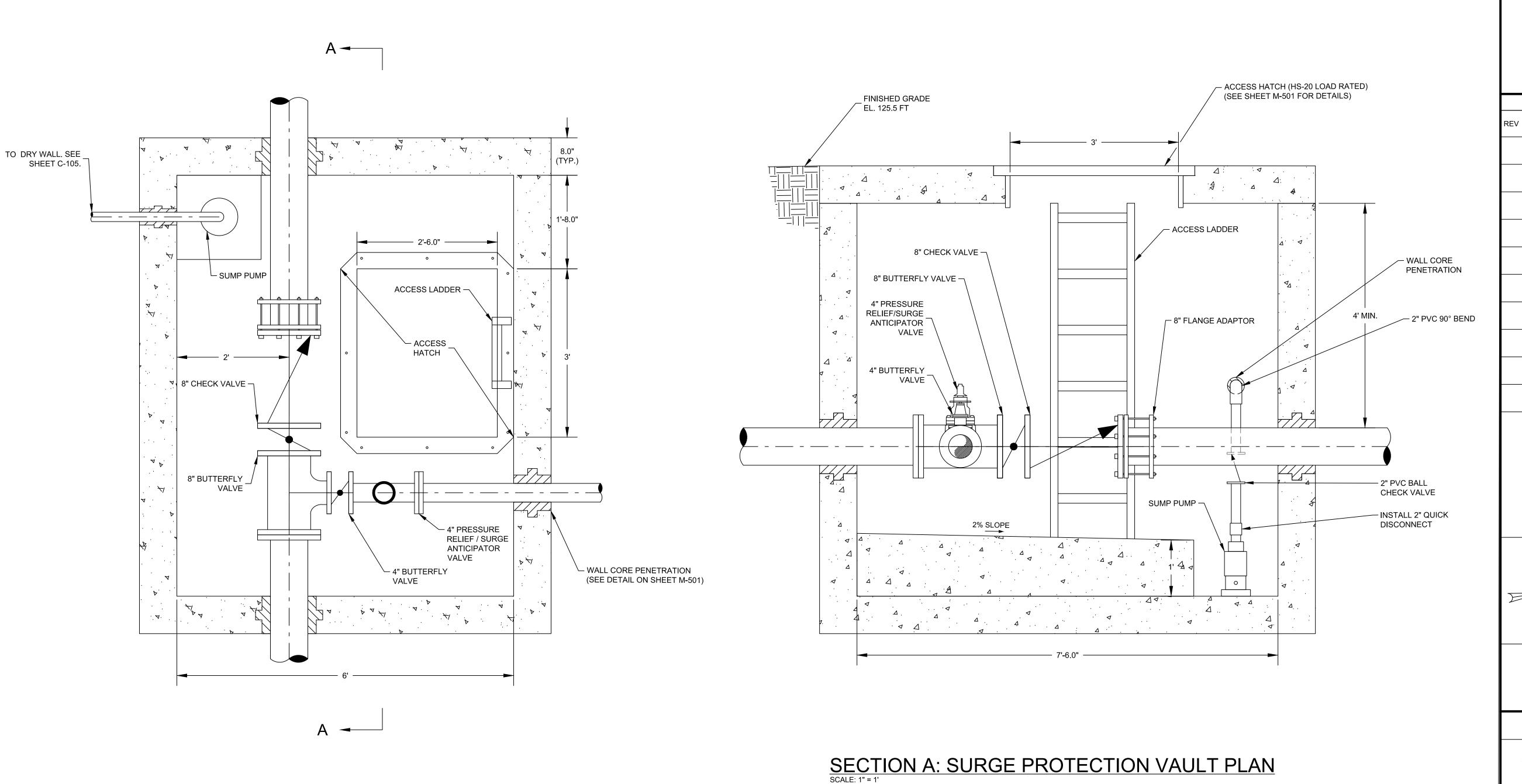
THIS BAR IS 1 INCH IN LENGTI ON ORIGINAL DRAWING 0 1"

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

SODIUM FLUORIDE CHEMICAL FEED AND CHLORINE ANALYZER SCHEMATICS

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY


TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054

PERMIT REVIEW SET

PROJECT NO.	20233667.002A
ISSUE DATE	OCT. 2023
CURRENT RE\	/ISION -
DESIGNED BY	AB/GAA
DRAWN BY	MPS
CHECKED BY	ТВ
APPROVED BY	' TB

M-009

SHEET 19 of 60

SURGE PROTECTION VAULT PLAN
SCALE: 1" = 1'

1. CONTRACTOR TO PROVIDE ADJUSTABLE SUPPORTS IN VAULT.

Cone Beacon Street, Suite 8100
Boston, MA 02108
Phone: 617-497-7800

Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

REV DESCRIPTION

DSN CHK
DWN APP

DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH
ON ORIGINAL DRAWING

0 1"

IF IT'S NOT 1 INCH ON THIS
SHEET ADJUST YOUR
SCALES ACCORDINGLY

0 1 2 3

SCALE: 1" = 1' SCALE IN FEET

ORIGINAL DRAWING SIZE IS 22 x 34

SURGE PROTECTION VAULT

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS
900 MAIN ST, MILLIS, MA 02054

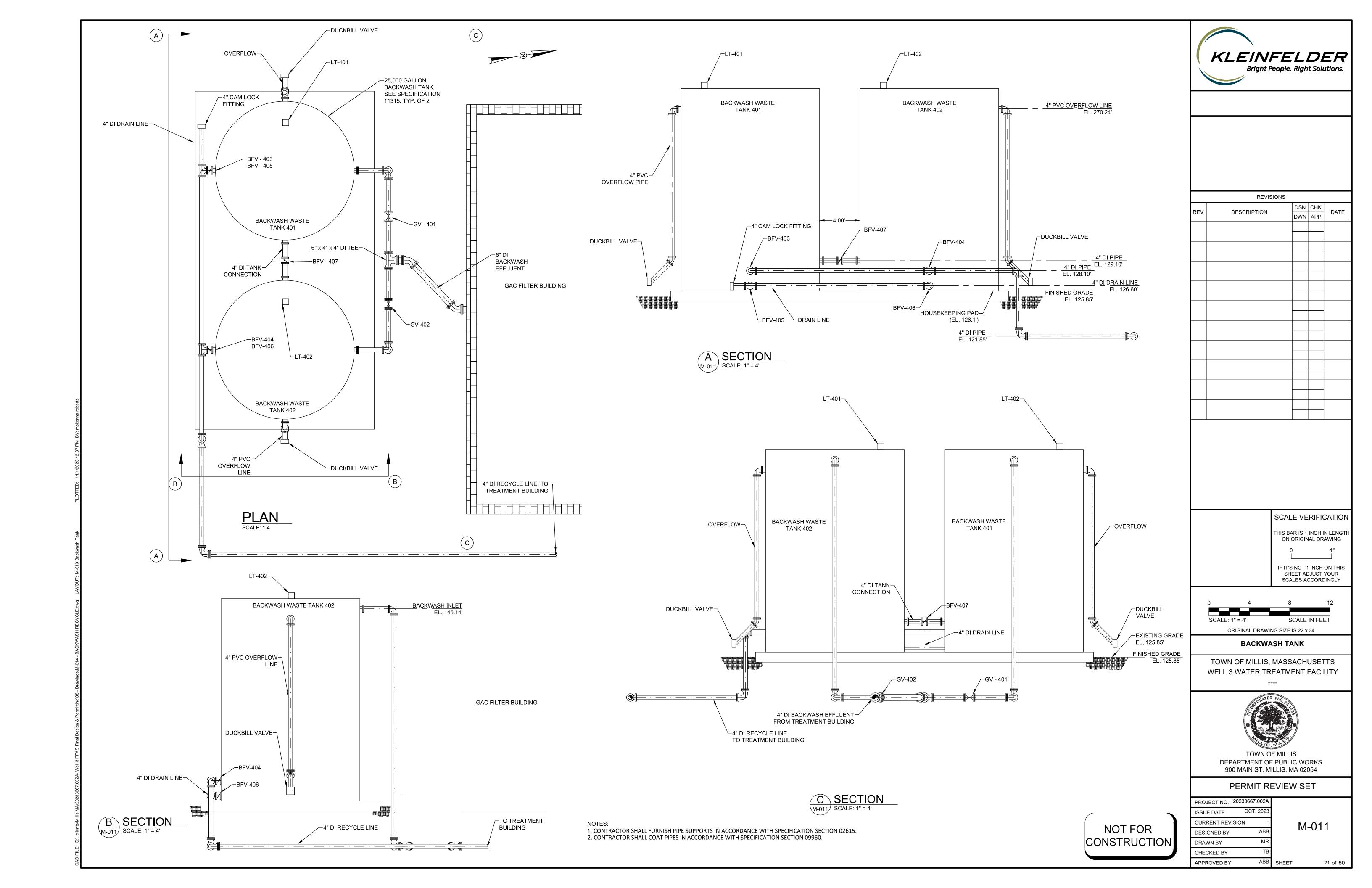
PERMIT REVIEW SET

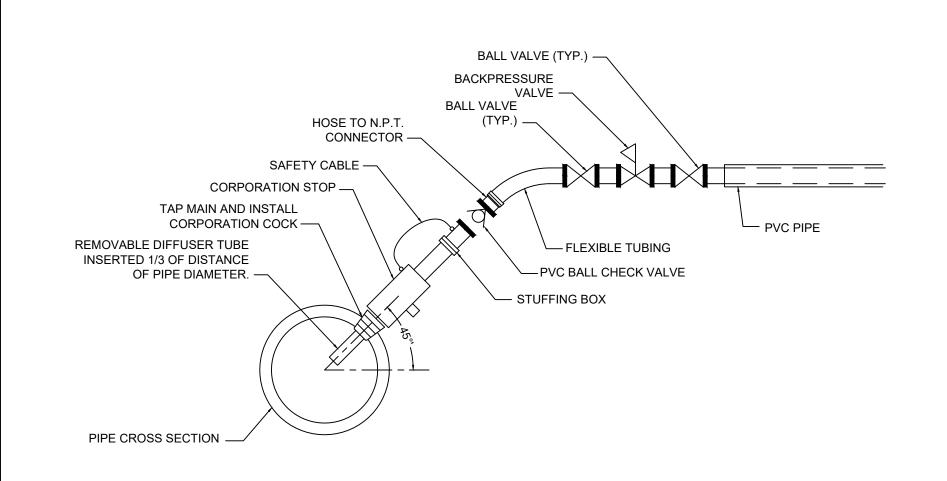
M-010

20 of 62

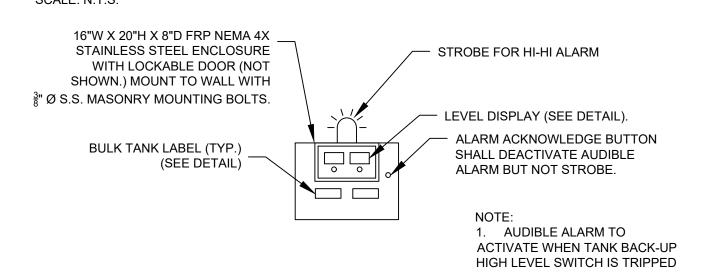
PROJECT NO. 20233667.002A

ISSUE DATE OCT. 2023


CURRENT REVISION
DESIGNED BY MD

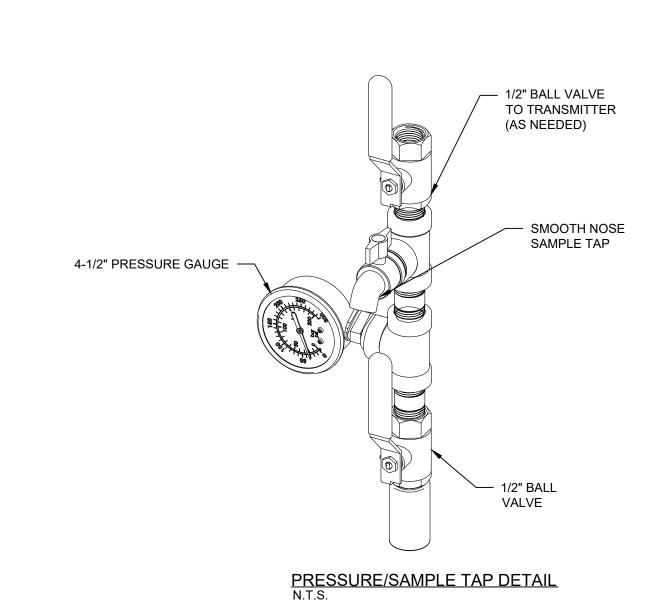

DRAWN BY MD

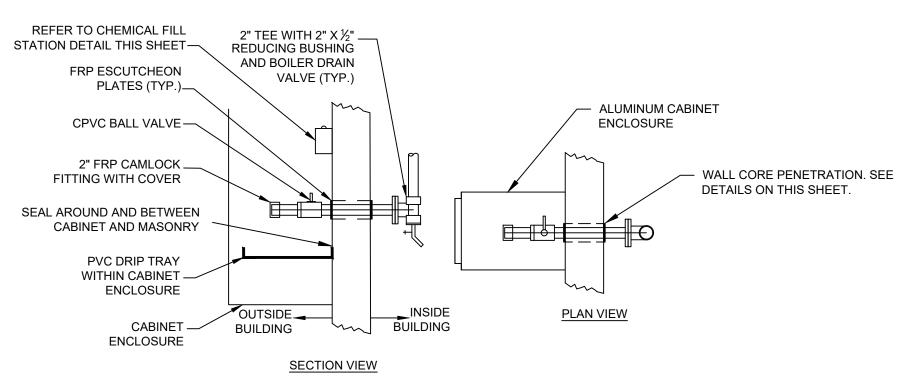
CHECKED BY TB


APPROVED BY TB

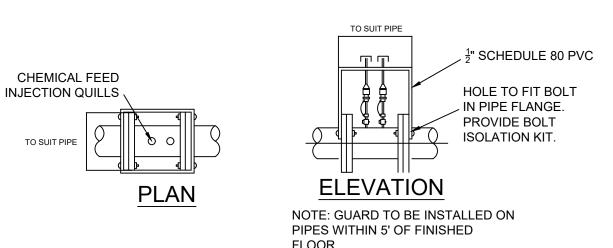
NOT FOR CONSTRUCTION

CHEMICAL INJECTION TAP DETAIL SCALE: N.T.S.

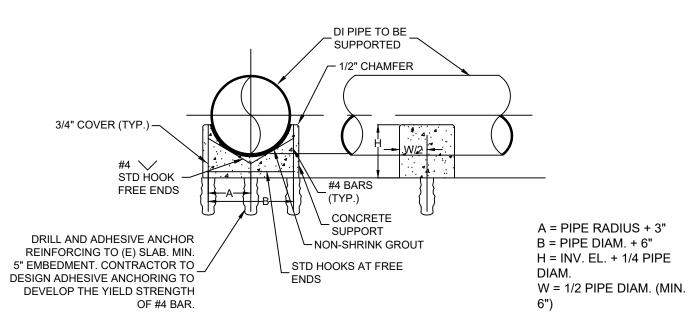


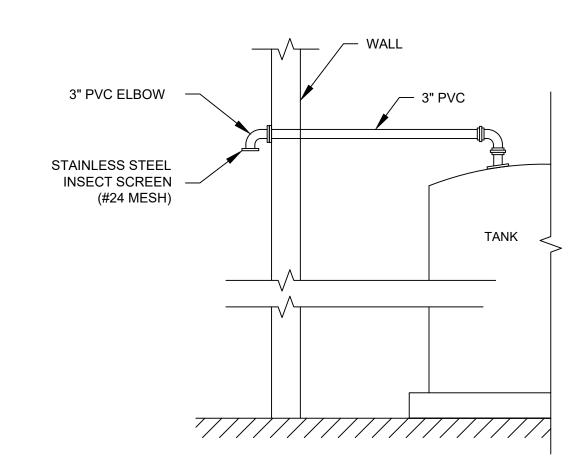

CHEMICAL FILL STATION DETAIL SCALE: N.T.S.

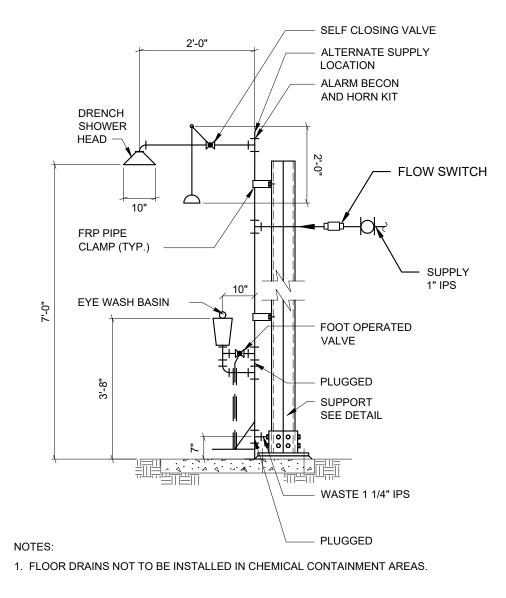
25% CAUSTIC SODA STORAGE TANK NO. X

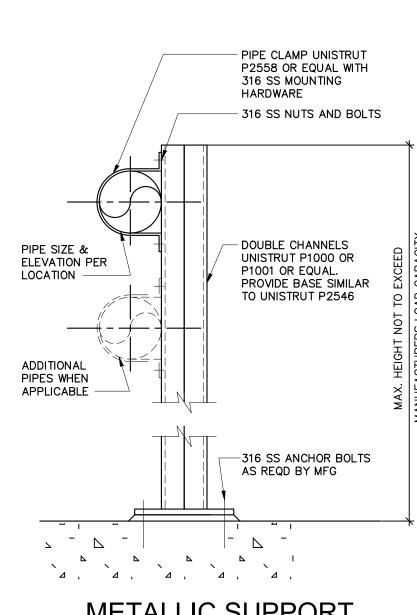

1. "X" SHALL BE REPLACED BY CORRESPONDING TANK NUMBER. 2. 25% CAUSTIC SODA SHALL BE REPLACED WITH APPROPRIATE CHEMICAL NAME AND STRENGTH. COORDINATE WITH

BULK TANK LABEL DETAIL




1. ONLY ONE FILL LINE SHALL BE INSTALLED FOR SODIUM HYPOCHLORITE AND SODIUM HYDROXIDE EACH. CHEMICAL FILL LINE DETAILS SCALE: N.T.S.


CHEMICAL INJECTION GUARD DETAIL


CONCRETE PIPE SUPPORT DETAIL SCALE: N.T.S.

CHEMICAL TANK VENT

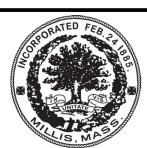
EMERGENCY SHOWER AND EYE WASH

NOT FOR CONSTRUCTION

Click Here to Select Office Address

REVISIONS

REV	DESCRIPTION	DSN	CHK	DATE
KEV	DESCRIPTION	DWN	APP	DATE

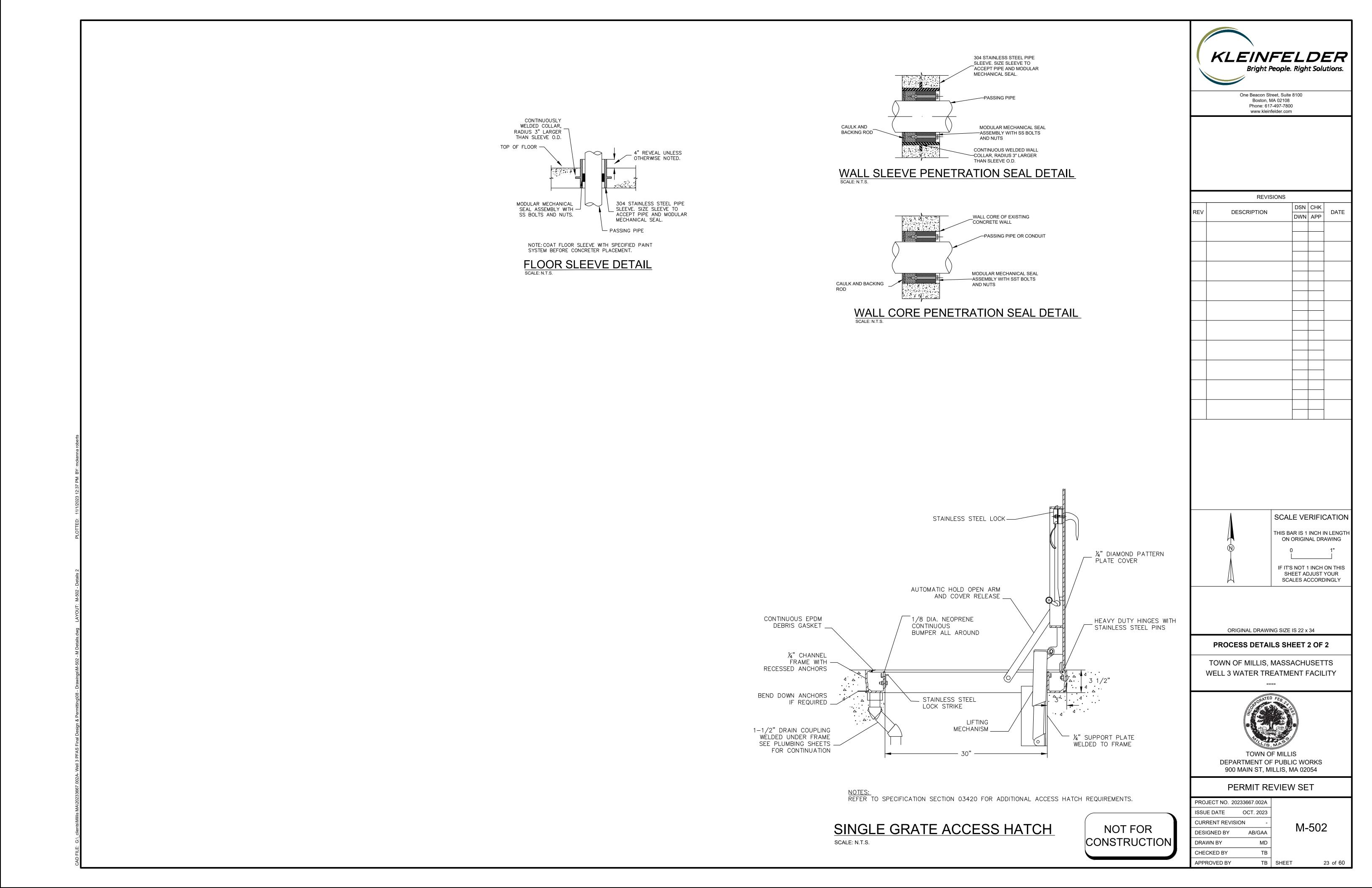

SCALE VERIFICATION
THIS BAR IS 1 INCH IN LENGT ON ORIGINAL DRAWING

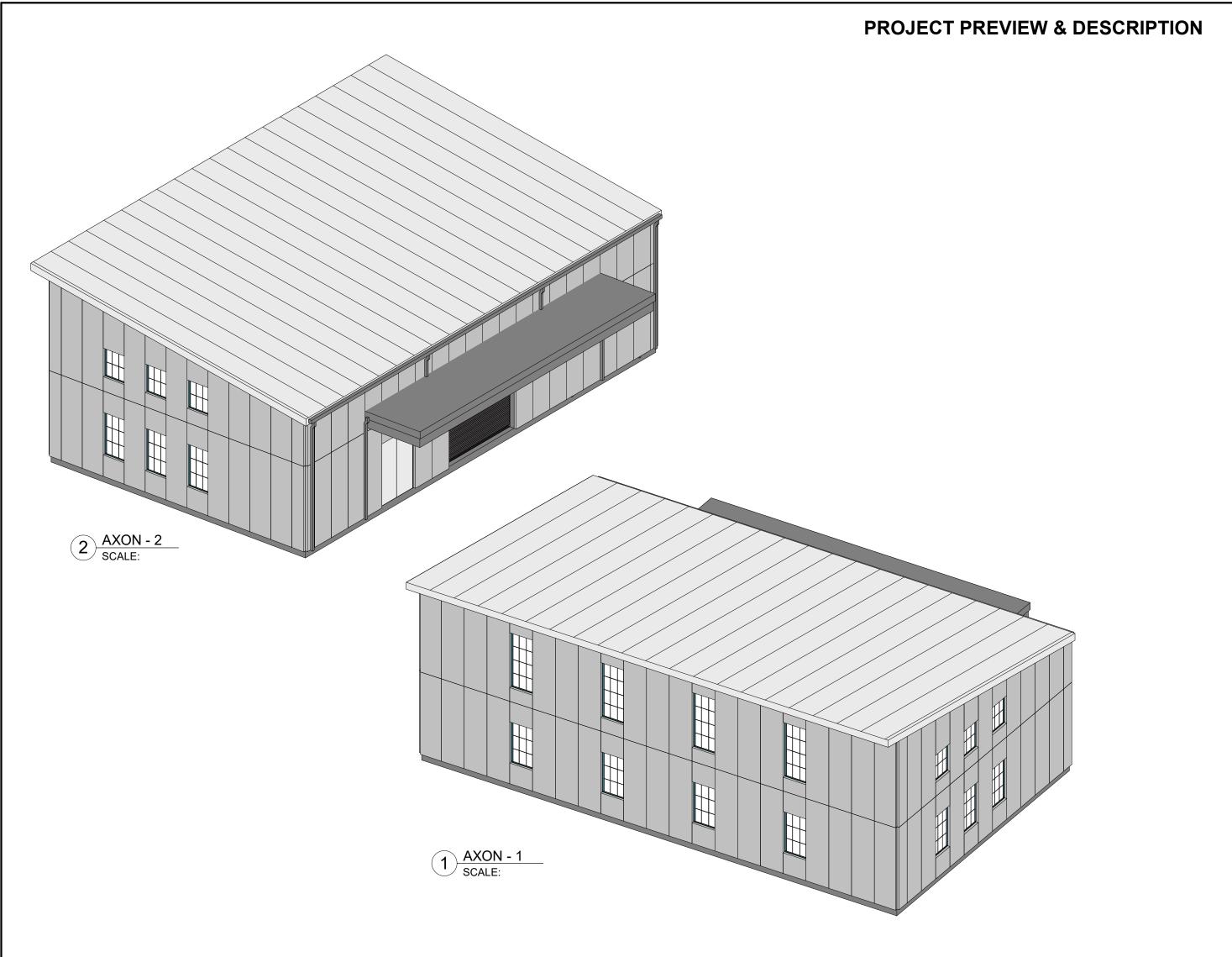
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

PROCESS DETAILS SHEET 1 OF 2

TOWN OF MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY


TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS 900 MAIN ST, MILLIS, MA 02054


PERMIT REVIEW SET

PROJECT NO. 2		
ISSUE DATE	OCT. 2023	
CURRENT REVI		
DESIGNED BY	AB/GAA	
DRAWN BY	MPS	
CHECKED BY	ТВ	
APPROVED BY	ТВ	SHEET

M-501

22 of 60

	1 AXON - 1 SCALE:	AXON - 1 SCALE:							
_	GENERAL NOTES	SYMBOLS	S LEGEND	MATERIAL	MATERIALS LEGEND				
1/26/2023 8:52:23 AM	 ALL WORK TO BE NEW U.O.N. ALL WORK SHALL COMPLY WITH FEDERAL, STATE, AND LOCAL BUILDING REGULATIONS. ANY CONFLICTS BETWEEN SITE CONDITIONS AND DRAWINGS SHALL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE OWNER AND ARCHITECT/DESIGNER. ALL DOORS TO BE A MINIMUM OF 4" FROM NEAREST PERPENDICULAR PARTITION, 				ALUMINUM		GWB		
PLOTTED: §	 U.O.N. TEMPERED GLASS TO BE USED IN ALL LOCATIONS AS REQUIRED BY MASSACHUSETTS STATE BUILDING CODE - CMR 780. REVIEW LAYOUTS FOR PARTITIONS IN FIELD WITH THE OWNER AND ARCHITECT/DESIGNER PRIOR TO START OF CONSTRUCTION. PROVIDE FIRE EXTINGUISHERS IN QUANTITIES AND LOCATIONS ON DWGS (MIN 1/6000) 	0	COLUMN GRID LINE		BATT INSULATION		PARTICLE BOARD		
	SQ-FT & 75' MAX TRAVEL DISTANCE). REVIEW FINAL LOCATIONS WITH THE ARCHITECT/DESIGNER PRIOR TO START OF CONSTRUCTION. 8. COORDINATE BLOCKING REQUIREMENTS AND LOCATIONS WITH ELEVATIONS AND DETAILS. ALL WOOD BLOCKING TO BE FIRE RETARDANT TREATED. 9. ALIGN CENTERLINES OF ALL WALL-MOUNTED FIRE EXTINGUISHERS AND MEP/FP DEVICES ON WALLS IN THE SAME LOCATION.	(1) A101	CENTER LINE DETAIL MARKER		BRICK		PLYWOOD		
	 DISCLAIMER: MANUFACTURERS REFERENCES ARE INTENDED TO ESTABLISH COLOR AND FINISH ONLY AND ARE NOT INTENDED TO LIMIT SELECTIONS FROM OTHER MANUFACTURERS. WHEN ALTERNATE SELECTIONS ARE SUBMITTED, SUBMITTAL SHALL INCLUDE MATERIALS LISTED FOR COMPARISON. DIMENSIONS: 	101	DOOR TAG		CERAMIC TILE		RIGID INSULATION		
	 A. ALL DIMENSIONS ARE TO FINISHED FACE OF WALL U.O.N. B. DRAWINGS ARE NOT TO BE SCALED; VERIFY ANY MISSING OR CONFLICTING WRITTEN DIMENSIONS WITH THE ARCHITECT/ DESIGNER PRIOR TO CONSTRUCTION. C. NOTIFY ARCHITECT OF CONDITIONS WHERE CLEAR OR CRITICAL DIMENSIONS ARE DESIGNATED BUT CANNOT BE MET OR WHERE CORRIDOR/AISLE WIDTH 	1 A101	SECTION MARKER		СМИ		SAND, CEMENT, GROUT		
	CANNOT MEET THE MINIMUM REQUIREMENTS (3'-8" U.O.N.) D. MAINTAIN FINISH FLOOR BASE ELEVATION THROUGHOUT THE CONTRACT AREA SUCH THAT ALL DIMENSIONS INDICATED AS ABOVE FINISH FLOOR ARE AT THE SAME ELEVATION.	Room name	ROOM IDENTIFICATION		COMPRESSIBLE FILLER		SHINGLE		
		1t	WALL TAG	4 4 4 4	CONCRETE		SMOKE SEALANT		
					EARTH		SPRAYED FIREPROOFING		
					GRATE		STEEL		
					GRAVEL		WOOD		

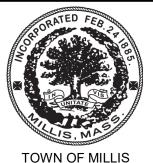
ADDDE	//ATIONIO						_
ABBKE	VIATIONS						
& @	And At	GND GR	Ground Grade	S SAFB	South Sound Attenuation Fiber Blanket		_
@ A/E AB	Architect / Engineer Anchor Bolt	GRL GRTG	Grille Grating	SC SCHED	Sealed Concrete Schedule		f
AC	Air Conditioning	GSKT	Gasket	SCR	Screw		
ACT ACP	Acoustic Ceiling Tile Acoustic Ceiling Panel	GT GVL	Grout Gravel	SCRN SD	Screen Soap Dispenser		
AD ADH	Access Door Adhesive	GWB	Gypsum Wall Board	SECT SF	Section Square Foot		
ADJ	Adjustable	НВ	Hose Bibb	SGL	Single		
ADJC AFF	Adjacent Above Finished Floor	HC HDW	Handicapped Hardware	SHT SHTHG	Sheet Sheathing		
AH AL	Air Handler Aluminum	HGT HM	Height Hollow Metal	SHV SIM	Shelving Similar		_
ALT	Alternate	HMD	Hollow Metal Door	SK	Sink		
ANOD APP	Anodized Approximately	HNDRL HO	Handrail Hold Open	SM SP	Sheet Metal Spray Particle Paint		
ARCH	Architectural	HORIZ	Horizontal	SPEC	Specifications		
ASPH	Asphalt	HP HR	High Point Hour	SQ SS / ST STL	Square Stainless Steel		
BD BETW	Board	HVAC	Heat, Ventilation & Air Conditioning	STD STL	Standard		
BIT	Between Bituminous	ID	Inside Diameter	STOR	Steel Storage		
BLDG BLKG	Building Blocking	IF IN	Inside Face Inch or Inches	STR SUSP	Structural Suspended		
BM	Beam	INSUL	Insulation	SVF	Sheet Vinyl Flooring		_
BO BOT	By Others Bottom	INT	Interior	SYM SYMM	Symbol Symmetrical		_
BP BR	Building Paper Brass	JAN JNT	Janitor Joint	SYS S4S	System Surface Four Sides	REV	
BRZ	Bronze						_
BU	Built Up	KD KIT	Knocked Down Kitchen	T T&G	Treads (Stairs) Tongue and Groove		
С	Course			TB	Tobble Bolt		_
C CAB	Center Line Cabinet	L LF	Left Linear Foot	TBD TDO	To Be Determined Thermoset Decorative Overlay (Melamine)		
CEM CG	Cement Corner Guard	LG	Length Ladder	TEMP TEL	Tempered / Temporary		_
CPT	Carpet	LAD LAM	Laminate	TERR	Telephone Terrazzo		
CHAN CHBD	Channel Chalkboard	LAV LB	Lavatory Pound	THK THRES	Thick Threshold		_
CHFR	Chamfer	LBL	Label	THRU	Through		
CHR CI	Chrome Cast Iron	LCC LH	Lead Coated Copper Left Hand	T&G T.O.	Tongue and Groove Top Of		_
CJ CL	Control Joint Closet	LHR LIN	Left Hand Reverse Linear	TOC TOM	Top Of Concrete Top Of Masonry		
CLG	Ceiling	LKR	Locker	TOS	Top Of Steel		_
CLR CMPST	Clearance Composite	LNTL LONG	Lintel Longitudinal	TOW TRANS	Top Of Wall Translucent		
CMU CNTR	Concrete Masonry Unit Counter	LP LT	Low Point Light	TYP	Typical		_
COL	Column	LTWT	Lightweight	UL	Underwriters Laboratory		
COMP CONC	Compressible Concrete	LTG LVR	Lighting Louver	UNFIN UNO / UON	Unfinished Unless Otherwise Noted		_
CONN	Connection			UR	Urinal		
CONSTR CONT	Construction Continuous	MAINT MANF	Maintenance Manufacturer	UV	Unit Ventilator		_
CONTR COP	Contractor Copper	MAS MATL	Masonry Material	VB VT / VCT	Vapor Barrier or Vinyl Base Vinyl Composition Tile		
CORR	Corridor	MAX	Maximum	VEN	Veneer		_
CT CW	Ceramic Tile Curtain Wall	MDO MECH	Medium Density Overlay Mechanical	VER VERT	Verify Vertical		
Ø	Diameter	MED MEMB	Medium Membrane	VEST VIF	Vestibule Verify In Field		_
DBL	Double	MF	Metal Flashing	VNR	Veneer		
DEMO DIA	Demolition Diameter	MFR MH	Manufacturer Manhole	VR VWC	Vapor Retarder Vinyl Wall Covering		
DIV DIM	Division	MIN	Minimum		,		
DMPF	Dimension Dampproofing	MIR MISC	Mirror Miscellaneous	W WC	West Water Closet		
DN DOP	Down Door Opening	MLDG MO	Molding Masonry Opening	WD W/	Wood With		
DR	Door	MS	Metal Stud	W/O	Without		
DS DSP	Downspout Dry Standpipe	MTD MTL	Mounted Metal	WGL WLD	Wired Glass Welded		
DTL DWG	Detail Drawing	MTR MULL	Mortar Mullion	WP WT	Working Point Weight		
	-	MVBL	Movable	WTH	Width		_
E EA	East Each	N	North	WTRPRF WWF	Waterproofing Welded Wire Fabric		
EB EF	Expansion Bolt Exhaust Fan	NA NAT	Not Applicable Natural				
EJ	Expansion Joint	NIC	Not In Contract				
EL ELEC	Elevation Electrical	NO NOM	Number Nominal				
ENGR	Engineer	NTS	Not To Scale				
ENTR EP	Entrance Electrical Panel	OA	Overall				
EQ EQUIP	Equal Equipment	OC OD	On Center Outside Diameter				
ESB	Exterior Soffit Board	OF	Outside Face				
ESMT ETR	Easement Existing to Remain	OFF OH	Office Overhead				
EWC EX / EXST	Electric Water Cooler Existing	OPNG OPHD	Opening Opposite Hand				
EXC	Excavate	OPP	Opposite				
EXH EXP	Exhaust Expansion	P&S	Power & Signal				_
EXT	Exterior	PAR PART	Parallel Partition				
FCO	Floor Clean Out	PC	Precast				_
FD FDN	Floor Drain Foundation	PERF PERP	Perforated Perpendicular			VILL	٨
FE FEC	Fire Extinguisher Fire Extinguisher Cabinet	PL PLAM	Plate Plastic Laminate			I VILL	
FF	Fabric Flashing	PM	Pressed Metal			PF	Α
FGL FHC	Fiberglass Fire Hose Cabinet	PNL PRMT	Panel Perimeter				_
FHY	Fire Hydrant	PT	Pressure Treated				
FIN FL	Finished Floor	PTD PVG	Painted Paving				
FLUOR FOC	Fluorescent Face of Concrete	PWD	Plywood				
FOF	Face of Finish	QT QT)	Quarry Tile				
FOM FR	Face of Masonry Fire Resistant	QTY	Quantity				
FPRF FRP	Fireproofing Fiber Reinforced Plastic	R RAD	Radius or (Stair) Risers Radiator				
FS	Full Size	RCP	Reflected Ceiling Plan				
FT FTG	Foot or Feet Footing	RD REC	Roof Drain Recessed				_
FTR FURN	Fin Tube Radiation Furniture	REF REFR	Reference Refrigerator				_
FURR	Furring	REINF	Reinforcing				
FV FWC	Field Verify Fabric Wall Covering	REM REQD	Removable Required			PROJE	Э ⁻
	•	REQMTS	Requirements Resilient			ISSUE I)/
G GA	Gas Gauge	RESIL RFI	Rigid Foam Insulation			CURRE	N
GALV GB	Galvanized Grab Bar	RFG RH	Roofing Right Hand			DESIGN	1E
GC	General Contractor	RM	Room			DRAWN	1
GEN GL	Generator Glass	RO RV	Rough Opening Roof Vent			CHECK	E
GLMU	Glass Masonry Unit					APPRO	V
							-

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

REVISIONS

DESCRIPTION

DSN CHK
DWN APP



SCALE AS NOTED

ORIGINAL DRAWING SIZE IS 22 x 34

GENERAL NOTES, LEGENDS & ABBREVIATIONS

LLAGE STREET MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIGN

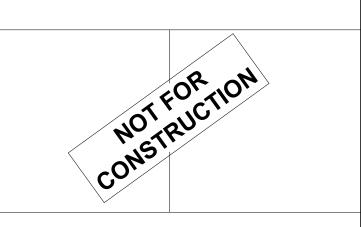
TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO.	20233667.002A	
ISSUE DATE	SEPT 2023	
CURRENT REVIS	SION	
DESIGNED BY	KL, PM	
DRAWN BY	PM	
CHECKED BY	DS	
APPROVED BY	DS	SHE

A-1

24 of 60


2018 INTERNATIO	ONAL ENERGY CONSERVATION CODE (2020	0 MEC)		
CHAPTER 4 COMMERCIAL ENERGY EFFICIENCY	TABLE C402.1.3 METAL BUILDING ROOFS WALLS ABOVE GRADE WALLS BELOW GRADE FLOORS (MASS) FLOORS (UNHEATED SLAB) OPAQUE DOORS (NON-SWINGING) TABLE C402.1.4 OPAQUE DOORS (SWINGING) GARAGE DOOR <14% GLAZING C402.3 ROOFTOP SOLAR READINESS	R-30 CI R-13 + R-13 CI R-7.5 CI R-10 CI R-10 (24" BELOW) R-4.75 U-0.37	COMPLIANCE FOR NEW CONSTRUCTION	
521 CMR ARCHIT	ECTURAL ACCESS BOARD			
CHAPTER 2	PURPOSE PUBLIC BUILDINGS			REV

CHEMICAL STORED ON SITE:

	BULK/DAY	VOLUME (GAL)	DIAMETER (IN)	HEIGHT (IN)
SODIUM HYPOCHLORITE	BULK	300	35	78
SODIUM HYPOCHLORITE	DAY	20	16	28
SODIUM HYPOCHLORITE	BULK	1000	64	80
SODIUM HYPOCHLORITE	DAY	100	28	43
SODIUM HYPOCHLORITE	SATURATOR - LARGE	50	18	53
SODIUM HYPOCHLORITE	SATURATOR - SMALL	5	11	13

APPLICABLE CODES STANDARDS AND REGULATIONS

BUILDING	2021 INTERNATIONAL BUILDING CODE (IBC) 780 CMR - MASSACHUSETTS STATE BUILDING CODE 9TH EDITION, WHICH IS AN AMENDED VERSION OF THE 2015 IBC
FIRE PROTECTION	527 CMR - BOARD OF FIRE PREVENTION REGULATIONS, WHICH IS AN AMMENDED VERSION OF NFPA 1 (FIRE CODE) 2015
PLUMBING	248 CMR - BOARD OF STATE EXAMINERS OF PLUMBERS AND GAS FITTERS
ELECTRICAL	527 CMR 12.00 MASSACHUSSETS ELECTRICAL CODE, WHICH IS AN AMENDED VERSION OF THE 2020 EDITION OF NFPA 70, NATIONAL ELECTRICAL CODE
MECHANICAL	2015 INTERNATIONAL MECHANICAL CODE (IMC) 271 CMR SHALL APPLY TO ALL SHEET METAL WORK
ENERGY	780 CMR 13.00 - ENERGY EFFICIENCY, WHICH AMENDS THE 2018 INTERNATIONAL ENERGY CONSERVATION CODE (IECC)
ACCESSIBLITY	521 CMR - ARCHITECTURAL ACCESS BOARD (AAB) RULES & REGULATIONS
OTHER	VARIOUS NATIONAL FIRE PROTECTION AGENCY (NFPA) CODES AND STANDARDS AS REFERENCED BY THE CODES LISTED ABOVE

KLEINFELDER

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800

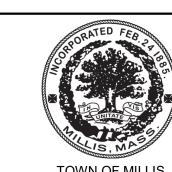
www.kleinfelder.com

REVISIONS

DESCRIPTION

DSN CHK

DWN APP

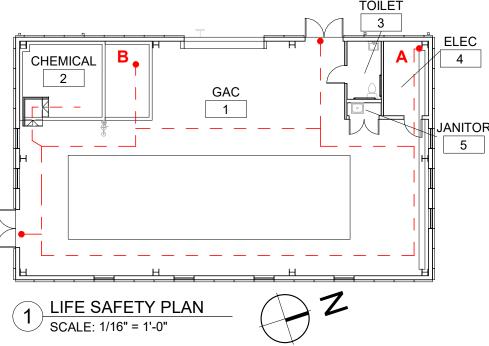

Bright People. Right Solutions.

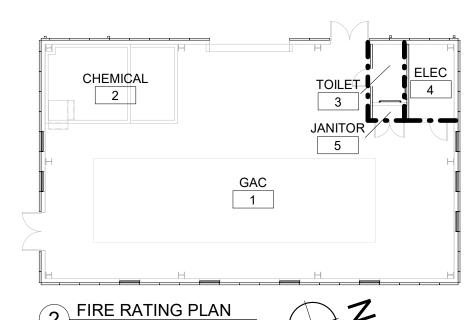
NOT TO SCALE

ORIGINAL DRAWING SIZE IS 22 x 34

CODE SUMMARY & LIFE SAFETY PLAN

VILLAGE STREET MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMINARY DESIGN

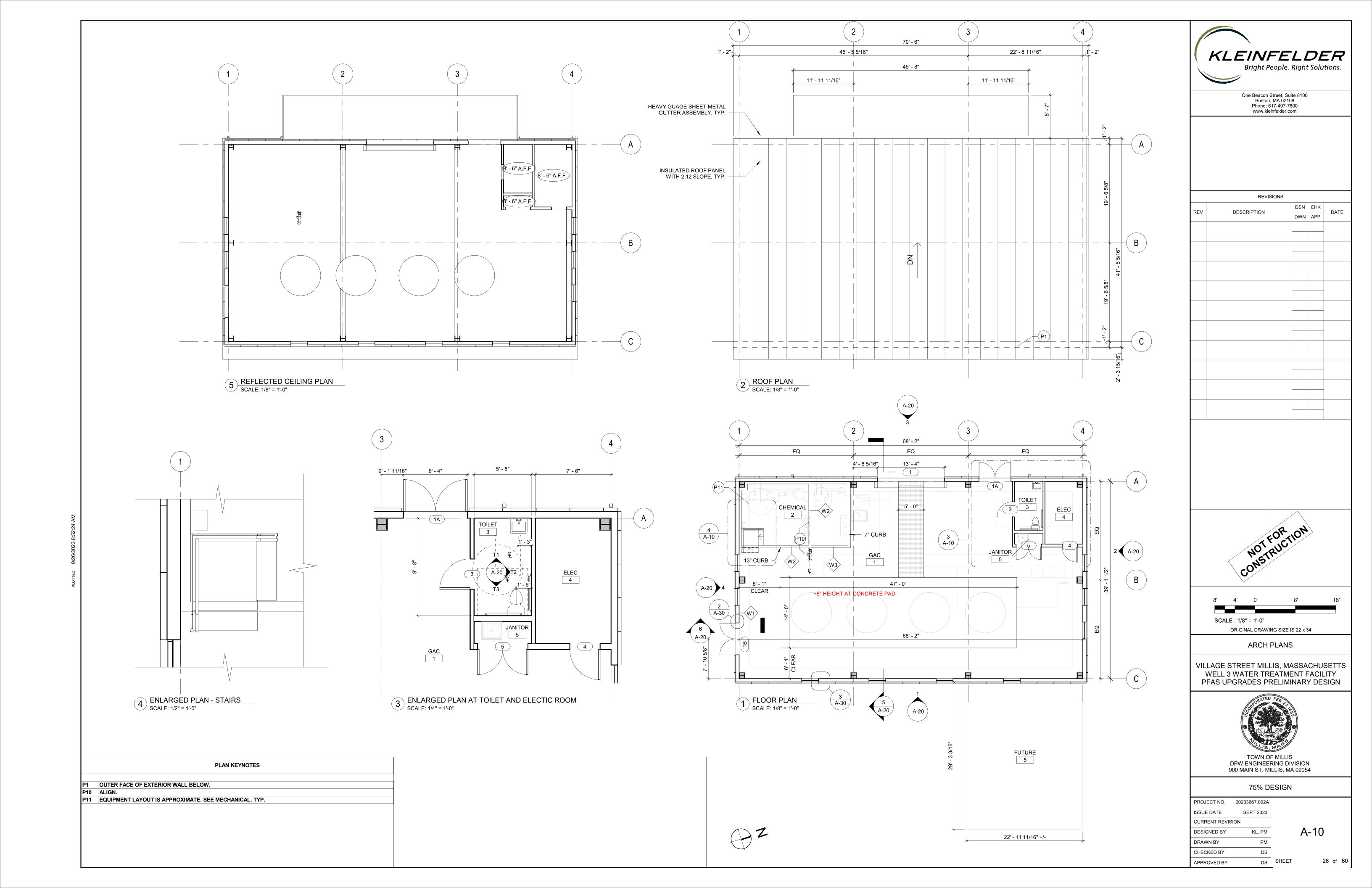

TOWN OF MILLIS DPW ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

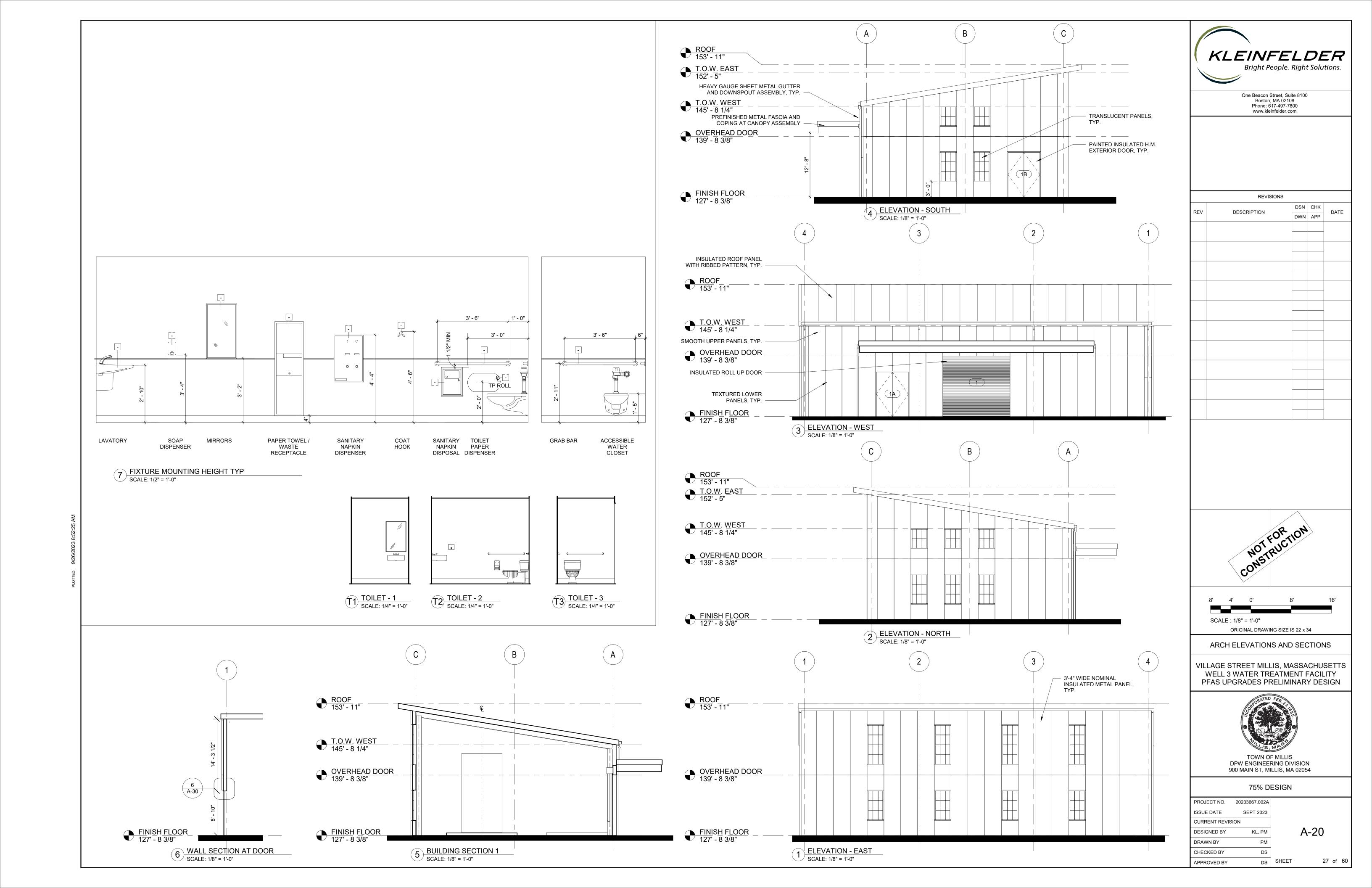

75% DESIGN

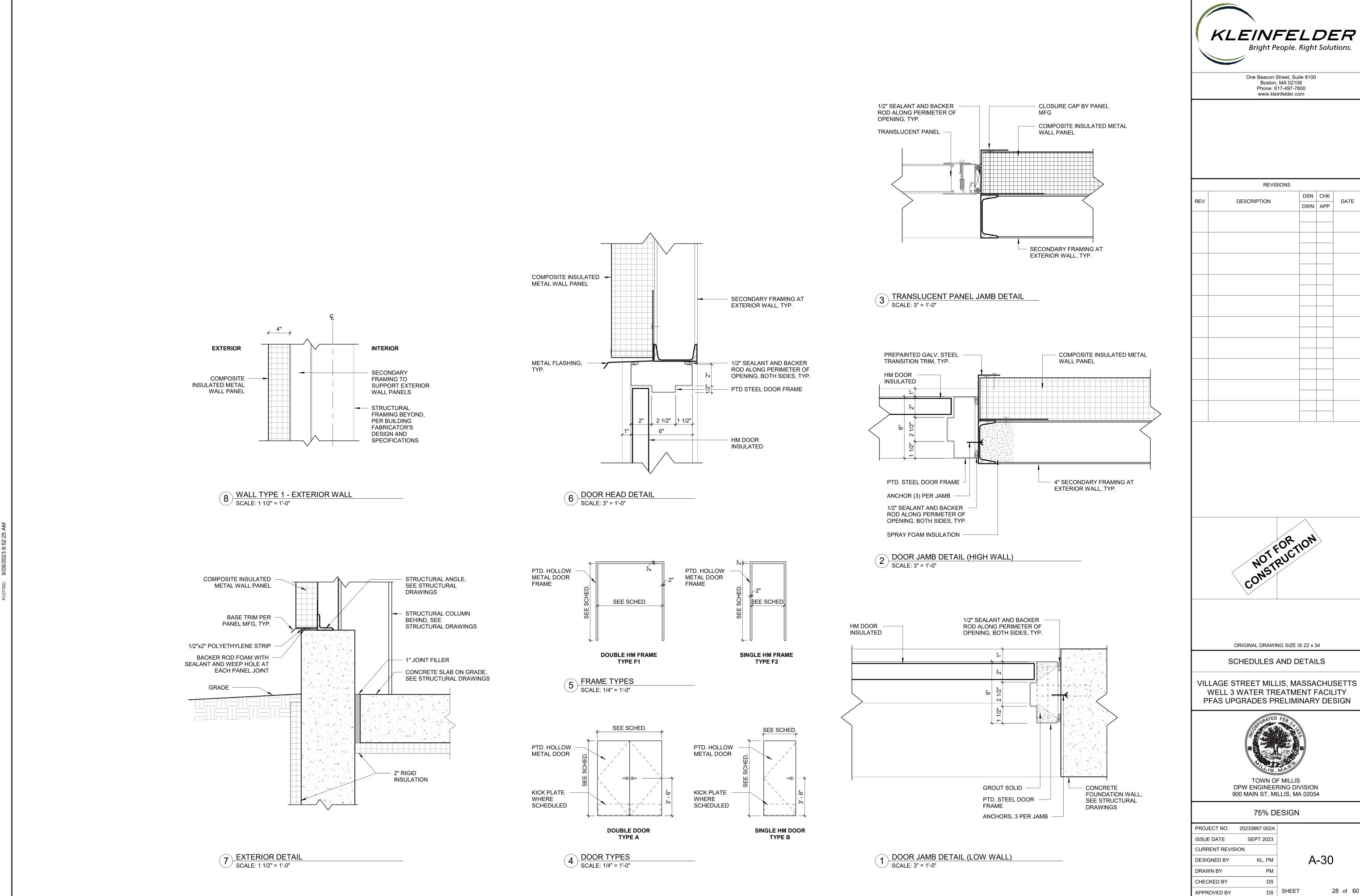
PROJECT NO. 20233667.002A ISSUE DATE **SEPT 2023** CURRENT REVISION DESIGNED BY KL, PM DRAWN BY CHECKED BY DS | SHEET APPROVED BY

A-2

25 of 60




LEGEND



1 HOUR FIRE RATED PARTITION.

PIRE RATING PLAN
SCALE: 1/16" = 1'-0"

KLEINFELDER

- 1. ALL WORK MUST CONFORM TO THE REQUIREMENTS OF THE MASSACHUSETTS STATE BUILDING CODE, 9TH
- 2. PROPOSED FIELD MODIFICATION, REVISIONS AND ADDITIONS TO THE DESIGN DRAWING MUST BE APPROVED BY THE ENGINEER, IN WRITING, BEFORE WORK BEGINS. ANY REQUEST TO DEVIATE FROM THE ENGINEER'S SPECIFIED DETAILS ON THE DESIGN DRAWING BY THE CONTRACTOR MUST BE SUBMITTED IN WRITING TO THE
- 3. CONTRACTOR MUST PROVIDE ALL MATERIAL, LABOR, EQUIPMENT, CONSUMABLES, AND ALL OTHER ITEMS REQUIRED TO COMPLETE THE WORK AS SPECIFIED ON THE DESIGN DRAWINGS, PROJECT SPECIFICATIONS, AND AS NECESSARY TO COMPLETE THE WORK.
- 4. CONTRACTOR MUST VISIT THE PROJECT SITE AND OBSERVE CONDITIONS FOR THE PROPOSED CONSTRUCTION. ANY DISCREPANCY BETWEEN THE DESIGN DRAWINGS AND ACTUAL SITE CONDITIONS MUST BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE ENGINEER, IN WRITING, FOR RESOLUTION PRIOR TO COMMENCEMENT OF THE
- 5. COMPLETED SHOP DRAWINGS FOR ALL WORK MUST BE SUBMITTED FOR REVIEW AND APPROVAL PRIOR TO THE START OF FABRICATION AND CONSTRUCTION ACTIVITIES.
- 6. UNLESS NOTED OTHERWISE ON THE DESIGN DRAWINGS, ALL DESIGN, MATERIALS, FABRICATION, TESTING, AND CONSTRUCTION MUST COMPLY WITH THE FOLLOWING NOTES, REFERENCED CODES, SPECIFICATIONS AND STANDARDS. SHOULD THESE NOTES, CODES, SPECIFICATIONS OR STANDARDS CONFLICT, THE STRICTEST PROVISION MUST GOVERN UNTIL WRITTEN CLARIFICATION IS PROVIDED TO THE CONTRACTOR.
- 7. THE STRUCTURAL DRAWINGS MUST BE USED IN CONJUNCTION WITH ALL OTHER DESIGN DRAWINGS AND SPECIFICATIONS. REFER TO PROCESS EQUIPMENT, ARCHITECTURAL, CIVIL, MECHANICAL, HVAC, PLUMBING, ELECTRICAL, AND FIRE PROTECTION DRAWINGS FOR LOCATIONS, DIMENSIONS, AND DETAILS OF OPENINGS, SLEEVES, EMBEDMENTS, AND EQUIPMENT INSERTS, PADS, CURBS, DEPRESSIONS, ANCHOR BOLTS, EXTERIOR GRADING AND OTHER PROJECT REQUIREMENTS NOT SPECIFIED ON STRUCTURAL DRAWINGS.
- 8. STRUCTURAL REQUIREMENTS TO SECURE FIXED EQUIPMENT, INCLUDING BUT NOT LIMITED TO ROOF TOP UNITS. EQUIPMENT AND EMBEDMENTS, ARE INCIDENTAL TO THE REQUIREMENTS OF A SPECIFIC EQUIPMENT MANUFACTURER. ALL WORK MUST CONFORM TO APPROVED EQUIPMENT MANUFACTURER'S SHOP DRAWINGS AND INSTALLATION INSTRUCTIONS. THE CONTRACTOR MUST SUBMIT TO THE ENGINEER FOR REVIEW AND APPROVAL ANY REQUIRED MODIFICATIONS TO ACCOMMODATE APPROVED EQUIPMENT. SUCH MODIFICATIONS MUST BE MADE AT NO COST TO THE OWNER.

B. PROTECTION OF EXISTING STRUCTURES NOTES

1. EXISTING STRUCTURES, CONDUITS, UTILITY LINES AND OTHER UTILITIES. MUST BE IDENTIFIED BY THE OWNER AND CONTRACTOR AND CLEARLY MARKED ON-SITE PRIOR TO INITIATING CONSTRUCTION. IN THE EVENT THAT ANY UNMARKED OR UNKNOWN STRUCTURE/UTILITY ARE UNCOVERED BY THE CONTRACTOR, WORK MUST HALT AND THE CONTRACTOR MUST REPORT ITS FINDINGS TO THE OWNER'S SITE REPRESENTATIVE FOR INSTRUCTIONS BEFORE PROCEEDING FURTHER. THE EXISTING STRUCTURES AND UTILITIES WHICH ARE ADJACENT TO THE SITE AND THOSE TO REMAIN WITHIN THE LIMITS OF THE WORK MUST BE PROTECTED AGAINST DAMAGE. THE CONTRACTOR WILL BE FULLY RESPONSIBLE IN THE EVENT OF REMOVAL OF OR DAMAGE TO ANY EXISTING OBJECTS BY THE CONTRACTOR'S PERSONNEL WHICH ARE INTENDED BY THE OWNER TO REMAIN IN

C. <u>DESIGN CRITERIA NOTES</u>

MAINTENANCE:

1. STRUCTURES ARE DESIGNED IN ACCORDANCE WITH THE MASSACHUSETTS STATE BUILDING CODE, 9TH EDITION.

20PSF

2. DEAD LOAD: WEIGHT OF BUILDING COMPONENTS SPECIFIED ON THE DRAWINGS MEP AND FP 10 PSF

3. LIVE LOAD: INTERIOR SLABS LIGHT STORAGE HEAVY STORAGE FLOOR PLATES AND GRADING	125 PSF 250 PSF
4. ROOF LIVE LOAD:	

5. SNOW LOAD:	
GROUND SNOW	. Pq = 40 PSF
FLAT-ROOF SNOW	$P_f = 35 PSF$
EXPOSURE FACTOR	$C_{\rm e} = 1.0$
THERMAL FACTOR	$C_t = 1.0$
IMPORTANCE FACTOR	$I_s = 1.0$
SLOPE FACTOR	$C_s = 1.0$
DRIFT SURCHARGE	$P_d = 42 PSF$

DRIFT WIDTH	W = 8.8 FT
6. WIND LOAD:	
RISK CATEGORY	II
ULTIMATE WIND SPEED	
NOMINAL WIND SPEED	$V_{asd} = 108 MPH$
EXPOSURE CATEGORY	С
DIRECTIONALITY FACTOR	$K_d = 0.85$
GUST EFFECT FACTOR	G = 0.85
TOPOGRAPHIC FACTOR	$K_{2t} = 1.0$

TOPOGRAPHIC FACTOR	$K_{2t} = 1.0$
SEISMIC LOAD:	
RISK CATEGORY	II
IMPORTANCE FACTOR	l _e = 1.0
SITE CLASSIFICATION	E
SEISMIC DESIGN CATEGORY	C
RESPONSE MODIFICATION FACTOR	R = 3
DESIGN SPECTRAL RESPONSES	$S_s = 0.189$
	$S_2 = 0.065$
	$S_{DS} = 0.314$
	$S_{D1} = 0.152$
SEISMIC FORCE RESISTING SYSTEM	
	FOR SEISMIC RESISTANCE
ANALYSIS PROCEDURE	EQUIVALENT LATERAL FORCE
	TOPOGRAPHIC FACTOR INTERNAL PRESSURE COEFFICIENT SEISMIC LOAD: RISK CATEGORY IMPORTANCE FACTOR SITE CLASSIFICATION SEISMIC DESIGN CATEGORY RESPONSE MODIFICATION FACTOR DESIGN SPECTRAL RESPONSES SEISMIC FORCE RESISTING SYSTEM ANALYSIS PROCEDURE

8. GEOTECHNICAL:	
GEOTECHNICAL INVESTIGATION ON GOING	Э.

REFERENCED SOIL PROPERTIES FROM GEOTECHNICAL REPORT ARE AS FOLLOWS: APPROXIMATE GROUND WATER ELEVATION BELOW GRADE .. SOIL BEARING CAPACITY (ALLOWABLE). COEFFICIENT OF FRICTION .. 0.45 SUBGRADE MODULUS .. 250 PCI

9. FLOOD:
9. FLOOD.
DESIGN CLASS
LOWEST FLOOR ELEVATION
DRY FLOODPROOFED ELEVATION

10. RAIN: INTENSITY i = 2.71 INCHES PER HR

D. BUILDING ERECTION NOTES

1. THE CONTRACTOR SHALL PROVIDE, FURNISH, AND ERECT BUILDING INCLUDING ALL STRUCTURAL SUPPORTS (PRIMARY AND SECONDARY), ROOFING AND SIDING MATERIALS, DOORS, AND DOOR OPERATIONG EQUIPMENT.

E. CAST-IN-PLACE CONCRETE NOTES

 ALL CONCRETE WORK AND MATERIALS MUST BE IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS AND THE CURRENT EDITION OF THE FOLLOWING STANDARDS: a. MASSACHUSETTS STATE BUILDING CODE (9TH EDITION)

b. GUIDE TO MASS CONCRETE (ACI 207)

c. SPECIFICATIONS FOR STRUCTURAL CONCRETE (ACI 301)

d. HOT WEATHER CONCRETE REQUIREMENTS (ACI 305) e. COLD WEATHER CONCRETE REQUIREMENTS (ACI 306)

f. BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318)

g. BUILDING CODE REQUIREMENTS FOR ENVIRONMENTAL ENGINEERING CONCRETE

STRUCTURES (ACI 350) h. RECOMMENDED PRACTICE FOR PLACING REINFORCING STEEL (CRSI)

i. STRUCTURAL WELDING CODE – REINFORCING STEEL (AWS D1.4)

j. PROJECT SPECIFICATIONS

k. OSHA STANDARDS 1910 & 1926 I. ACI DETAILING MANUAL (SP-66)

2. SHOP DRAWINGS, SHOWING ALL FABRICATION DIMENSIONS AND LOCATIONS FOR PLACING OF THE REINFORCING STEEL AND ACCESSORIES, MUST BE SUBMITTED TO THE ENGINEER FOR REVIEW AND APPROVAL PRIOR TO ANY FABRICATION.

3. REINFORCING BARS MUST BE FABRICATED IN ACCORDANCE WITH THE STANDARD FABRICATED TOLERANCES SPECIFIED IN ACI 315, CHAPTER 4

4. NO ALUMINUM EMBEDMENT IN THE CONCRETE IS PERMITTED.

5. ALL EXPOSED CONCRETE EDGES MUST HAVE A 3/4" X 3/4", 45° CHAMFER UNLESS NOTED OTHERWISE.

6. ALL PERMANENTLY EXPOSED VERTICAL AND HORIZONTAL CONCRETE SURFACES MUST BE TREATED OR SEALED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS AND CONCRETE FINISH REQUIREMENTS.

7. UNLESS NOTED OTHERWISE STEEL REINFORCEMENT MUST CONFORM TO THE FOLLOWING STANDARDS:

a. REINFORCING STEEL MUST BE DEFORMED BILLET STEEL CONFORMING TO ASTM A615,

b. WELDABLE REINFORCING STEEL MUST BE DEFORMED BILLET STEEL CONFORMING TO ASTM A706, GRADE 60.

c. EPOXY COATED REINFORCING STEEL MUST BE DEFORMED BILLET STEEL CONFORMING TO ASTM A775, GRADE 60.

d. WELD WIRE FABRIC (MESH) MUST CONFORM TO ASTM A185 AND MUST BE PROVIDED IN FLAT SHEETS (ROLLS NOT PERMITTED).

e. UNLESS NOTED OTHERWISE ON THE DESIGN DRAWINGS ALL REINFORCING STEEL IS UNCOATED (PLAIN) DEFORMED BARS.

f. TIE ALL REINFORCING STEEL AND EMBEDMENTS SECURELY IN PLACE PRIOR TO PLACING CONCRETE. PROVIDE SUPPORTS TO MAINTAIN THE POSITION OF REINFORCEMENT WITHIN SPECIFIED TOLERANCES DURING ALL CONSTRUCTION ACTIVITIES. WET "STICKING" DOWELS, ANCHORS, ETC. INTO CONCRETE IS NOT

PERMITTED. g. REINFORCING STEEL MUST BE DETAILED AND FABRICATED IN ACCORDANCE WITH ACI 315 "DETAILS AND DETAILING CONCRETE REINFORCEMENT".

h. UNDIMENSIONED HOOKS AT ENDS OF REINFORCEMENT AND STIRRUPS MUST BE

STANDARD HOOKS IN ACCORDANCE WITH ACI 318 UNLESS NOTED OTHERWISE. i. REINFORCING STEEL MUST BE SPLICED AS SPECIFIED ON THE DESIGN DRAWINGS OR AS APPROVED, IN WRITING, BY THE ENGINEER. WHEN SPLICE LENGTHS ARE NOT SPECIFIED ON THE DESIGN DRAWINGS THEY MUST BE THE MINIMUM LENGTHS DEFINED IN THE "TENSION LAP SPLICE LENGTH" TABLE. SPLICES NOT DEFINED ON THE DESIGN DRAWINGS MUST BE LAPPED IN ACCORDANCE WITH THE PROVISIONS OF ACI

318 FOR CLASS B SPLICES. REINFORCING STEEL MUST BE CONTINUOUS THROUGH ALL CONSTRUCTION JOINTS, CORNERS, AND INTERSECTIONS UNLESS NOTED OTHERWISE. REINFORCING STEEL MUST NOT BE CONTINUOUS THROUGH SLAB-ON-GRADE CONTROL JOINTS. REINFORCING STEEL MUST BE LAPPED AT NECESSARY SPLICES OR HOOKED AT

DISCONTINUOUS END WITH ACI 318 STANDARD HOOKS UNLESS NOTED OTHERWISE. k. FIELD WELDING OF CROSSING BARS BY TACK WELDING IS STRICTLY PROHIBITED. I. ALL REINFORCING STEEL MUST BE FREE FROM LOSE RUST, SCALE OR ANY FOREIGN MATERIAL PRIOR TO PLACING ANY CONCRETE.

8. PROVIDE ADDITIONAL REINFORCEMENT ALONG EACH SIDE OF OPENINGS AS SPECIFIED IN THE STANDARD DETAILS UNLESS NOTED OTHERWISE.

9. MECHANICAL REINFORCEMENT SPLICES SHALL BE PERMITTED SUBJECT TO THE CONTRACTOR PROPOSED LOCATIONS AND APPROVAL, IN WRITING, BY THE ENGINEER. IN ALL ENGINEER APPROVED INSTANCES, MECHANICAL SPLICES MUST DEVELOP AT A MINIMUM OF 125 PERCENT OF THE SPECIFIED YIELD STRENGTH OF THE REINFORCING BAR.

10. MINIMUM CONCRETE PROTECTIVE COVERING FOR REINFORCEMENT SHALL BE AS

FOLLOW, UNLESS NOTED OTHERWISE: a. CONCRETE CAST AGAINST EARTH (NOT FORMED) b. CONCRETE EXPOSED TO EARTH OR WEATHER ... c. CONCRETE NOT EXPOSED TO EARTH OF WEATHER . d. CONCRETE OVER OR IN-CONTACT WITH LIQUID ...

11. UNLESS NOTED OTHERWISE CONSTRUCTION, EXPANSION, AND CONTROL JOINTS MUST CONFORM TO THE FOLLOWING STANDARDS:

a. HORIZONTAL CONSTRUCTION JOINTS ARE PERMITTED ONLY WHERE SPECIFIED ON THE DESIGN DRAWINGS. ALL OTHERS DEEMED NECESSARY, BY THE CONTRACTOR, MUST BE APPROVED, IN WRITING, BY THE ENGINEER.

b. THE LOCATION OF VERTICAL CONSTRUCTION JOINTS MUST BE APPROVED, IN WRITING, BY THE ENGINEER. CONSTRUCTION JOINTS MUST BE ROUGHENED TO 1/4" AMPLITUDE IN ACCORDANCE WITH ICRI CSP STANDARDS.

c. UNLESS NOTED OTHERWISE, PLACE VERTICAL CONTROL JOINTS IN RETAINING WALLS AT 20'-0" O.C. (MAX.), 3/4" DEEP, V-CHAMFERED ON BOTH FACES. CONSTRUCTION JOINTS MUST COINCIDE WITH CONTROL JOINTS.

d. THE DESIGNATION "C.J." INDICATES A CONSTRUCTION JOINT BETWEEN SUCCESSIVE CONCRETE PLACEMENTS.

12. A MINIMUM OF 72 HOURS MUST ELAPSE BETWEEN ADJACENT CONCRETE PLACEMENTS.

E. CAST-IN-PLACE CONCRETE NOTES (CONT.)

13. UNLESS NOTED OTHERWISE EMBEDDED ITEMS MUST CONFORM TO THE FOLLOWING

STANDARDS: a. CONCRETE WORK MUST BE COORDINATED WITH ALL PROCESS, EQUIPMENT WATERPROOFING, ARCHITECTURAL, MECHANICAL, HVAC, FIRE PROTECTION, CIVIL, PLUMBING, ELECTRICAL WORK AND VENDOR'S DRAWINGS FOR EMBEDDED ITEMS NOT SPECIFIED ON THE DESIGN DRAWINGS. THE CONTRACTOR IS FULLY RESPONSIBLE FOR COORDINATING AND PLACING ALL EMBEDDED ITEMS SPECIFIED ON THE DRAWINGS OR REQUIRED BY VARIOUS TRADES.

b. PRIOR TO PLACEMENT OF ANY CONCRETE, ALL DESIGN DRAWINGS MUST BE REVIEWED TO ENSURE THAT ALL EMBEDDED ITEM ARE PROPERLY PLACED AND ANCHORED. THE CONTRACTOR MUST VERIFY INSTALLATION AND LOCATIONS OF ALL EMBEDDED ITEMS INCLUDING, BUT NOT NECESSARILY LIMITED TO, INSERTS, ANCHOR BOLTS, ANCHOR RODS, DOWELS, BLOCKOUTS, SLEEVES, EMBEDDED PIPING AND CONDUIT PRIOR TO CONCRETE PLACEMENT.

c. ALL EMBEDDED PLATES MUST BE FLUSH WITH FINISH SURFACE OF CONCRETE. d. WATERSTOPS MUST BE OF SIZE AND TYPE AS SPECIFIED ON THE DESIGN DRAWINGS AND IN THE PROJECT SPECIFICATIONS AND MUST BE CONNECTED TO PROVIDE A CONTINUOUS WATERTIGHT SEAL.

14. CONCRETE FLOOR AND ROOF SLOPES MUST BE AN INTEGRAL PART OF FRAMED SLABS. SEPARATE CONCRETE FILL OR TOPPING SLABS ARE NOT PERMITTED UNLESS NOTED OTHERWISE ON THE DESIGN DRAWINGS.

15. CONCRETE SURFACES SPECIFIED TO BE ROUGHENED MUST BE ROUGHENED TO 1/4" AMPLITUDE IN ACCORDANCE WITH ICRI CSP STANDARDS.

16. CONCRETE SLABS AND BEAMS MUST BE PLACED MONOLITHICALLY UNLESS NOTED OTHERWISE.

17. AIR-ENTRAIN ALL CONCRETE.

18. ALL CONCRETE MUST HAVE TYPE I OR II PORTLAND CEMENT CONFORMING TO ASTM

19. ALL CONCRETE MUST BE NOMINAL WEIGHT AND HAVE THE FOLLOWING MINIMUM

STRENGTH UNLESS NOTED OTHERWISE:

a. LEAN CONCRETE FOR FILL_1000 PSI @ 28 DAYS b. SPREAD FOOTING AND FOUNDATION WALLS 5000 PSI @ 28 DAYS

c. SLAB-ON-GRADE_5000 PSI @ 28 DAYS d. HOUSEKEEPING PADS 5000 PSI @ 28 DAYS

e. LIQUID CONTAINMENT STRUCTURES_5000 PSI @ 28 DAYS

20. ADHESIVE ANCHORING SYSTEM FOR DRILLED-IN REINFORCING BARS MAY BE PERMITTED SUBJECT TO THE APPROVAL, IN WRITING, BY THE ENGINEER. WHEN APPLICATION IS APPROVED, THE ANCHORING SYSTEM MUST BE DESIGNED BY A PROFESSIONAL STRUCTURAL ENGINEER REGISTERED IN THE STATE HAVING AUTHORITY OF THE PROJECT THE ANCHORING SYSTEM MUST CONFORM TO THE REQUIREMENTS OF ICC-ES AC308 AND BE DESIGNED ACCORDING TO THE METHODS OUTLINES THEREIN AND BE CAPABLE DEVELOPING THE FULL YIELD STRENGTH OF THE BAR BASED ON THE RESULTS OF UNCONFINED PULL-OUT TESTING.

F. POST-INSTALLED ANCHORS

1. THE CONTRACTOR MUST BE RESPONSIBLE TO POSITION AND INSTALL ALL POST-INSTALLED ANCHOR BOLTS TO THE LOCATIONS AND ELEVATIONS SPECIFIED ON THE DESIGN DRAWINGS, IN ACCORDANCE WITH THE REQUIREMENTS AND TOLERANCES OF THE PROJECT SPECIFICATION AND MANUFACTURER RECOMMENDATIONS. POST-INSTALLED ANCHORS MUST BE INSTALLED ONLY IN HARDENED, CURE CONCRETE THAT IS 28 DAYS OR OLDER.

2. DRILLED-IN ADHESIVE ANCHOR SYSTEM MUST BE HILTI HIT-RE 500V3, DIAMETER AND ANCHOR MATERIAL AS SPECIFIED ON THE DESIGN DRAWINGS, COMPLETED WITH THREADED ROD, NUT AND WASHER AS MANUFACTURED BY HILTI, INC., OR EQUAL AS APPROVED, IN WRITING, BY THE ENGINEER. ANCHORS MUST BE INSTALLED IN PROPERLY PREPARED AND CLEANED DRY HOLES, FREE OF STANDING WATER, MOISTURE, ETC. IN STRICT ACCORDANCE WITH MANUFACTURERS REQUIREMENTS.

G. CAST-IN-PLACE ANCHOR BOLTS & EMBEDMENTS

1. THE CONTRACTOR IS RESPONSIBLE TO POSITION AND INSTALL ALL ANCHOR BOLTS AND EMBEDMENTS TO THE LOCATIONS AND ELEVATIONS SPECIFIED ON THE DESIGN DRAWINGS AND IN ACCORDANCE WITH THE REQUIREMENTS AND TOLERANCES OF THE PROJECT SPECIFICATIONS. ALL ANCHOR BOLTS AND EMBEDMENTS MUST BE RIGIDLY SECURED AND PROTECTED IN PLACE TO PREVENT MOVEMENT OR DAMAGE DURING CONCRETE PLACEMENT OPERATIONS WITH TEMPLATES. RIGID TEMPLATES MUST REMAIN IN PLACE A MINIMUM OF 24 HOURS AFTER CONCRETE PLACEMENT HAS CEASED.

2. THE CONTRACTOR IS RESPONSIBLE TO PROTECT ALL ANCHOR BOLTS AND EMBEDMENTS FROM DAMAGE OR RUST DURING SHIPMENT AND STORAGE.

3. ANCHOR BOLTS MUST BE SHOP FABRICATED IN ACCORDANCE WITH THE PROJECT SPECIFICATIONS TO THE MATERIALS, DIAMETERS AND DIMENSIONS SPECIFIED ON THE DESIGN DRAWINGS. ANCHOR BOLTS MUST BE COMPLETE WITH WASHERS AND HEAVY HEX NUTS. ALL ANCHOR BOLT ASSEMBLIES MUST BE TAGGED WITH MARK NUMBER, INCLUDING STEEL MATERIAL GRADE IDENTIFICATION.

4. STRUCTURAL STEEL EMBEDMENT PLATES, BARS, SHAPES, AND ASSEMBLIES MUST BE FABRICATED IN ACCORDANCE WITH THE PROJECT SPECIFICATION MATERIALS AS SPECIFIED ON THE DESIGN DRAWINGS AND MUST CONFORM TO THE REQUIREMENTS OF THE AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC). ALL EMBEDMENT ASSEMBLIES MUST BE TAGGED WITH MARK NUMBER.

5. ANCHOR BOLT ASSEMBLIES AND STEEL EMBEDMENTS MUST BE HOT-DIP GALVANIZED IN ACCORDANCE WITH ASTM A123 AND ASTM A153, AS APPLICABLE.

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

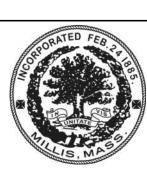
NOT FOR CONSTRUCTION

REVISIONS

REV	DESCRIPTION	DSN	CHK	DATE
REV	DESCRIPTION	DWN	APP	DATE

SCALE VERIFICATION		
THIS BAR IS 1 INCH IN LENGTH		

0	1"
IF IT'S NOT 1	INCH ON THIS
SHEET ADJUST	YOUR SCALES


ACCORDINGLY

ON ORIGINAL DRAWING

ORIGINAL DRAWING SIZE IS 22 x 34

GENERAL NOTES SHEET 1 OF 2

VILLAGE STREET MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMANARY DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

	1070 2	
PROJECT NO.	20233667.002A	
ISSUE DATE	SEPT. 2023	
CURRENT REVIS	SION	
DESIGNED BY	DF	
DRAWN BY	JFC	
CHECKED BY	KM	
APPROVED BY	DF	SH
	•	

S-101

STRUCTURAL ABBREVIATIONS

ADD'L. A.F.F. ALT.	ADDITIONAL ABOVE FINISHED FLOOR ALTERNATE	MFR. MAS. MAX.	MANUFACTURE(R) (D) MASONRY MAXIMUM
4.В. }	ANCHOR BOLT AND	MECH. M.E.P.	MECHANICAL MECHANICAL/ELECTRICAL/PLUMBING
=	ANGLE	MEZZ.	MEZZANINE
APPROX. ARCH.	APPROXIMATE(LY) ARCHITECT(URAL)	MID. M.O.	MIDDLE MASONRY OPENING
D	AT	M.W.C.J.	MASONRY WALL CONTROL JOINT
BSMT. B. PL.	BASEMENT BASE PLATE	MTL. MIN.	METAL MINIMUM
BM.	BEAM	MISC.	MISCELLANEOUS
BRG. BTWN.	BEARING BETWEEN	N.S. N.S.N.M.	NEAR SIDE NO SHRINK NON METALLIC
BLK(G).	BLOCK(ING)	N	NORTH
SD. SOT.	BOARD BOTTOM	N/A N.I.C.	NOT APPLICABLE NOT IN CONTRACT
.C.X.	BOTTOM CHORD EXTENSION	N.T.S.	NOT TO SCALE
5.O. 5.O.F.	BOTTOM OF BOTTOM OF FOOTING	# or NO. O.C.	NUMBER ON CENTER
.N.	BOUNDARY NAILING	OPNG.	OPENING
LDG. RKT.	BUILDING BRACKET	OPP. O.H.	OPPOSITE OPPOSITE HAND
AMB.	CAMBER	O.S.B.	ORIENTED STRAND BOARD
ANT. J.I.P.	CANTILEVER CAST-IN-PLACE	O.D. O.F.	OUTSIDE DIAMETER OUTSIDE FACE
or CL.	CENTER LINE	OH.	OVERHEAD
.C.D. LR.	CITY CONSTRUCTION DIRECTIVE CLEAR(ANCE)	PARA. PART.	PARALLEL PARTITION
i.F.	COLD FORMED	PVMT.	PAVEMENT
OL. ONC.	COLUMN CONCRETE	PEN. d	PENETRATION PENNY, NAIL
MU	CONCRETE MASONRY UNIT	PERIM.	PERIMETER
ONN. ONSTR.	CONNECT(ION) CONSTRUCTION	PERP. Pc.	PERPENDICULAR PIECE
.J.	CONSTRUCTION JOINT	₽_or PL.	PLATE
ONT. OORD.	CONTINUE or CONTINUOUS COORDINATE	± PW.	PLUS OR MINUS PLYWOOD
.Y.	CUBIC YARD	PT.	POINT
P. or DEG.	DEEP DEGREE	PVC. LB(S).	POLYVINYL CHLORIDE POUND(S)
EMO.	DEMOL(ISH)(ITION)	P.S.F.	POUNDS PER SQUARE FOOT
EPRESS. IAG.	DEPRESS(ED)(ION) DIAGONAL	P.S.I. P.A.F.	POUNDS PER SQUARE INCH POWER ACTUATED FASTENERS
or DIA.	DIMENSION	P.C.	PRECAST CONCRETE
BL. WL(S.)	DOUBLE DOWEL(S)	P.J.F. P.T.	PREFORMED JOINT FILLER PRESSURE TREATED
N. `	DOWN	R or RAD.	RADIUS
WG. A.	DRAWING EACH	REF. REINF.	REFERENCE REINFORCE(D) (ING)
.E.	EACH END	REQ'MTS.	REQUIREMENTS
i.F. i.G.	EACH FACE FOR EXAMPLE	REQ'D. RET.	REQUIRED RETAINING
.S.	EACH SIDE	REV.	REVIS(E) (ION)
.W.	EACH WAY EAST	R.D. REG.	ROOF DRAIN ROOFING
.O.D.	EDGE OF DECK	R.O.	ROUGH OPENING
.O.S. .N.	EDGE OF SLAB EDGE NAILING	RBL. S.C.C.J.	RUBBLE SAWCUT CONTROL JOINT
L.	ELEVATION	SECT.	SECTION
MBED. Q.	EMBEDMENT or EMBEDDED EQUAL	S.CONN. SW.	SHEAR CONNECTOR SHEARWALL
QUIP.	EQUIPMENT	S.W.	SHORT WAY
QUIV. ST.	EQUIVALENT ESTIMATE	SIM. S.O.G.	SIMILAR SLAB-ON-GRADE
XIST. or (E)	EXISTING	S.C.	SLIP CRITICAL
XP. .J.	EXPANSION EXPANSION JOINT	S SP(S).	SOUTH SPACE(S)
XT.	EXTERIOR	SPÉC.	SPECIFICATION
AB. .O.C.	FABRICATOR or FABRICATION FACE OF CONCRETE	SQ. S.F.	SQUARE SQUARE FOOT or FEET
.O.M.	FACE OF MASONRY	S.I.	SQUARE INCH(ES)
.O.S. .O.W.	FACE OF STUD FACE OF WALL	STD. S.S.	STANDARD STAINLESS STEEL
.S.	FAR SIDE	STL.	STEEL
RP. IN.	FIBER REINFORCED PLASTIC FINISHED	STIFF. STRUCT.	STIFFENER STRUCTUR(E) (AL)
.F.	FINISHED FLOOR	SYM.	SYMMETR(Y) (ICAL)
IN. GR. .P.	FINISHED GRADE FIRE PROOF(ING) or PROTECTION	TEMP. THK.	TEMPORARY or TEMPERATURE THICK(EN) (ENED) (NESS)
LG.	FLANGE	THRU	THROUGH
.D. T.	FLOOR DRAIN FOOT or FEET	T.J. TOL.	TIE JOIST TOLERANCE
TG.	FOOTING	T.&G.	TONGUE AND GROOVE
.S. NDN.	FOOTING STEP FOUNDATION	T.C.J. T&B	TOOLED CONTROL JOINT TOP AND BOTTOM
.W.C.J.	FOUNDATION WALL CONTROL JOINT	T.C.X.	TOP CHORD EXTENSION
SALV. SA.	GALVANIZE(D) GAUGE, GAGE	T.O. T.O.C.	TOP OF TOP OF CONCRETE
EN.	GENERAL	T.O.S.	TOP OF STEEL
i.C. i.L.	GENERAL CONTRACT(OR) GLUE LAMINATED	T.O.W. TOT.	TOP OF WALL TOTAL
R.	GRADE	Ţ	TREAD or TON
RD. .S.A.	GROUND HEADED STUD ANCHORS	TYP. U.N.O.	TYPICAL UNLESS NOTED OTHERWISE
GT.	HEIGHT	V.I.F.	VERIFY IN FIELD
.P. SS	HIGH POINT HOLLOW STRUCTURAL SECTIONS	VERT. V.E.F.	VERTICAL VERTICAL EACH FACE
K.	HOOK(ED)	W.S.C.J.	WATERSTOPPED CONSTRUCTION JOI
ORIZ. .E.F.	HORIZONTAL HORIZONTAL EACH FACE	WT. W	WEIGHT WEST
DG	HOT-DIP GALVANIZE	W.	WIDE
l IFO.	INCH(ES) INFORMATION	WF W.W.F.	WIDE FLANGE WELDED WIRE FABRIC
D.	INSIDE DIAMETER	W/	WITH
F. IT.	INSIDE FACE INTERIOR	W/O W.P.	WITH OUT WORKING POINT
J.	ISOLATION JOINT	WD.	WOOD
IV. Γ.	INVERT JOINT		
ST.	JOIST		
O.	KIPS KNOCKOUT		
.B.	LAG BOLT		
VL .F.	LAMINATED VENEER LUMBER LINEAR FOOT		
.l.	LINEAR INCH		
.W.	LIGHTWEIGHT		
.L. G.	LIVE LOAD LONG		
LH	LONG LEG HORIZONTAL		
LV .S.H.	LONG LEG VERTICAL LONG SLOTTED HORIZONTAL		
S.V. W.	LONG SLOTTED VERTICAL LONG WAY		

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

NOT FOR CONSTRUCTION

REVISIONS

DESCRIPTION

DSN CHK
DWN APP

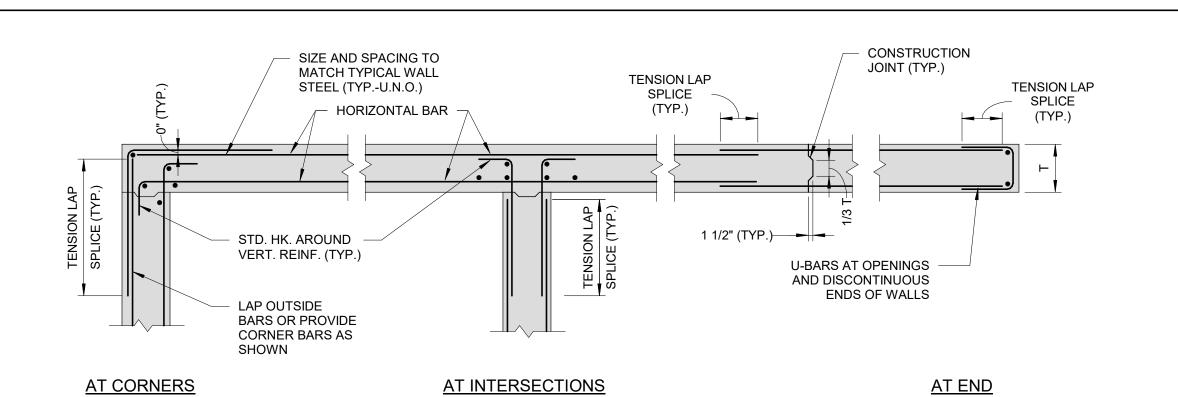
SCA	ALE	E VE	RIFIC	CATION

ORIGINAL DRAWING SIZE IS 22 x 34

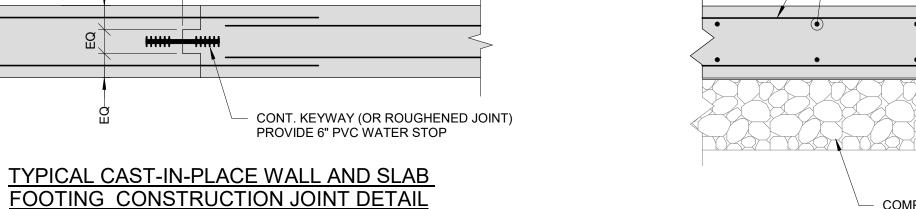
GENERAL NOTES SHEET 2 OF 2

VILLAGE STREET MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMANARY DESIGN

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054


75% DESIGN

	1070 2
PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REVIS	SION
DESIGNED BY	DF
DRAWN BY	JFC
CHECKED BY	KM
APPROVED BY	DF


S-102

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

CONT. KEYWAY (OR ROUGHENED JOINT)
PROVIDE 6" PVC WATER STOP

KLEINFELDER Bright People. Right Solutions. One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

NOT FOR

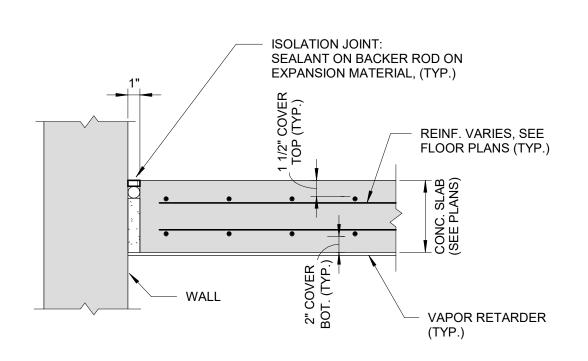
CONSTRUCTION

REVISIONS

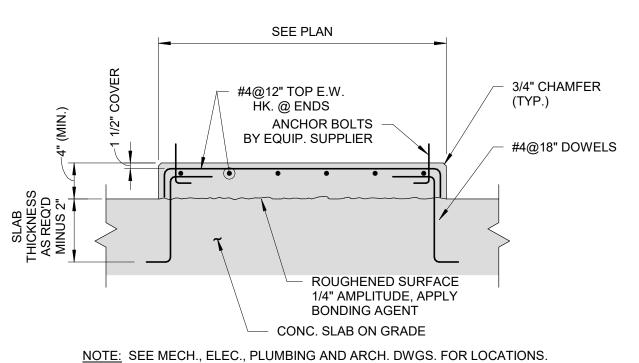
DESCRIPTION

DSN CHK
DWN APP

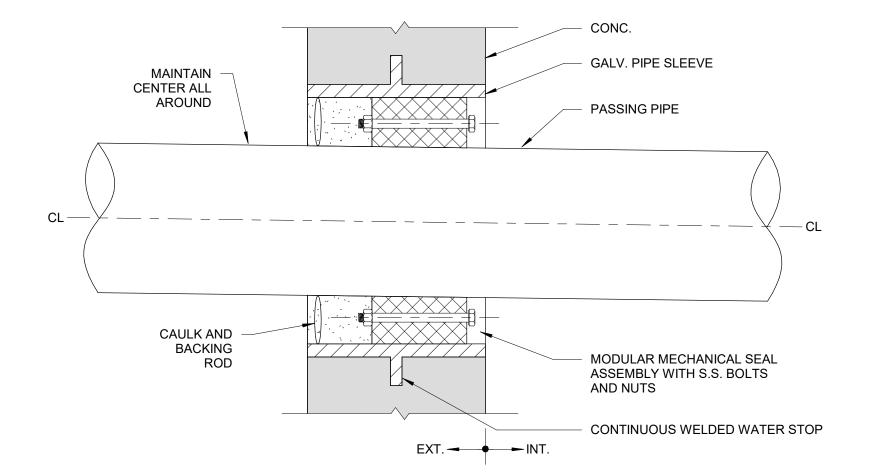
REINF., SEE PLANS (TYP.)

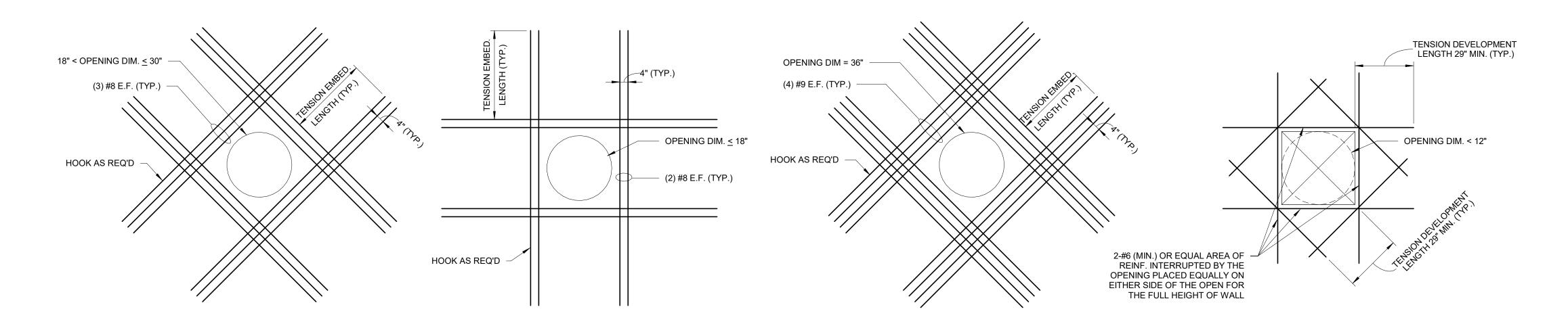

COMPACTED STRUCTURAL FILL

- VAPOR RETARDER


TYPICAL SLAB-ON-GRADE DETAIL (U.N.O.)

TYPICAL FOUNDATION WALL CONSTRUCTION JOINT AND HORIZONTAL REINFORCING DETAILS SCALE: N.T.S.

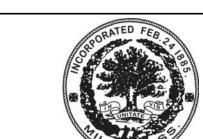

NOTE: ALL SPLICES TO BE CLASS "B" UNLESS NOTED OTHERWISE.


TYPICAL SLAB-ON-GRADE EXPANSION JOINT DETAIL

TYPICAL INTERIOR CONCRETE PAD DETAIL SCALE: N.T.S.

TYPICAL WALL PIPE PENETRATION SEAL DETAIL SCALE: N.T.S.

TYPICAL FOUNDATION WALL OPENING DETAIL SCALE: N.T.S.


TYPICAL DETAIL SHEET 1 OF 2 VILLAGE STREET MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMANARY DESIGN

ORIGINAL DRAWING SIZE IS 22 x 34

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PR	OJECT NO.	20233667	7.002A	
ISS	SUE DATE	SEPT.	2023	
CU	IRRENT REVIS	SION		
DE	SIGNED BY		DF	
DR	AWN BY		JFC	
CH	IECKED BY		KM	
AP	PROVED BY		DF	SHEE

S-201 31 of 60

		TENSI	ON LAF	SPLIC	E LEN	GIHS -	GRAD	E 60 U	NCOAT	ED BA	.RS		
					f'c = 3,0	00 psi or GI	REATER, N	ORMAL WE	EIGHT CON	CRETE			
			f'c = 3	000 psi			f'c = 4	,000 psi			f'c = 5	,000 psi	
BAR SIZE DESIGNATION	LAP CLASS	TOP	BARS	OTHER	R BARS	TOP	BARS	OTHER	R BARS	TOP	BARS	OTHER	R BARS
		CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2	CASE 1	CASE 2
40	Α	22	32	17	25	19	28	15	22	17	25	13	19
#3	В	28	42	22	32	24	36	19	28	22	33	17	25
#4	Α	29	43	22	33	25	37	19	29	22	33	17	26
	В	37	56	29	43	32	48	25	37	29	43	22	33
4 г	Α	36	54	28	41	31	47	24	36	28	42	22	32
#5	В	47	70	36	54	40	60	31	47	36	54	28	42
#6	Α	43	64	33	50	37	56	29	43	33	50	26	38
	В	56	84	43	64	48	72	37	56	43	65	33	50
117	Α	63	94	48	72	54	81	42	63	49	73	37	56
#7	В	81	122	63	94	70	106	54	81	63	94	49	73
40	Α	72	107	55	82	62	93	48	72	55	83	43	64
#8	В	93	139	72	107	80	121	62	93	72	108	55	83
110	А	81	121	62	93	70	105	54	81	63	94	48	72
#9	В	105	157	81	121	91	136	70	105	81	122	63	94
W4.0	Α	91	136	70	105	79	118	61	91	70	105	54	81
#10	В	118	177	91	136	102	153	79	118	91	137	70	105
114.4	Α	101	151	78	116	87	131	67	101	78	117	60	90
#11	В	131	196	101	151	113	170	87	131	101	152	78	117
#14	N/A	121	181	93	139	105	157	81	121	94	140	72	108
	N1/A		0.1.1	404	400			407	404	405	107		

NOTES:

- 1. TABULATED VALUES ARE BASED ON GRADE 60 REINFORCING BARS AND NORMAL WEIGHT CONCRETE.
- 2. TENSION DEVELOPMENT LENGTHS AND TENSION LAP SPLICE LENGTHS ARE BASED ON ACI 318-14, SECTION 12.2.2 AND 12.15, RESPECTIVELY. TABULATED VALUES FOR BEAMS OR COLUMNS ARE BASED ON TRANSVERSE REINFORCEMENT AND CONCRETE COVER MEETING MINIMUM
- 3. CASES 1 AND 2, WHICH DEPEND ON THE TYPE OF STRUCTURAL ELEMENT, CONCRETE COVER, AND THE CENTER-TO-CENTER SPACING OF THE BARS, ARE DEFINED AS:

N/A 161 241 124 186 139 209 107 161 125 187 96 144

BEAMS or	CASE 1	COVER AT LEAST 1db AND CTRCTR. SPACING AT LEAST 2db	
	COLUMNS	CASE 2	COVER LESS THAN 1db AND CTRCTR. SPACING LESS THAN 2db
	ALL OTHERS	CASE 1	COVER AT LEAST 1db AND CTRCTR. SPACING AT LEAST 3db
		CASE 2	COVER LESS THAN 1db AND CTRCTR. SPACING LESS THAN 3db

CODE REQUIREMENTS. LENGTHS ARE IN INCHES.

- 4. LAP CLASS A VALUES ARE THE REQUIRED TENSION DEVELOPMENT LENGTHS, Ld; LAP SPLICE LENGTHS ARE MULTIPLES OF TENSION DEVELOPMENT LENGTHS; CLASS A 1.0Ld AND CLASS B = 1.3Ld (ACE 318-02, SECTION 12.15.1).
- 5.LAP SPLICES OF #14 or #18 BARS ARE NOT PERMITTED. THE TABULATED VALUES FOR THOSE BAR SIZES ARE THE TENSION DEVELOPMENT
- 6. TOP BARS ARE HORIZONTAL BARS WITH MORE THAN 12 INCHES OF CONCRETE CAST BELOW THE BARS.
- 7. FOR LIGHTWEIGHT AGGREGATE CONCRETE, MULTIPLY THE TABULATED VALUES BY 1.3; or WHEN f_{ct} IS SPECIFIED, THE FACTOR IS 6.7 $\sqrt[4]{r_c/f}$ $ct \ge 1.0$.
- 8. FOR EPOXY-COATED BARS, MULTIPLY THE TABULATED VALUES BY ONE OF THE FOLLOWING FACTORS:

CONCRETE COVER AND SPACING	TOP BARS	OTHER BARS
COVER < 3d _b or CTRCTR. SPACING > 7d _b	1.7 / 1.3 - 1.31	1.50
COVER ≤ 3d _b or CTRCTR. SPACING ≤ 7d _b	1.20	1.20

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

NOT FOR CONSTRUCTION

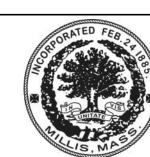
REVISIONS

DESCRIPTION

DSN CHK
DWN APP

		i

ORIGINAL DRAWING SIZE IS 22 x 34

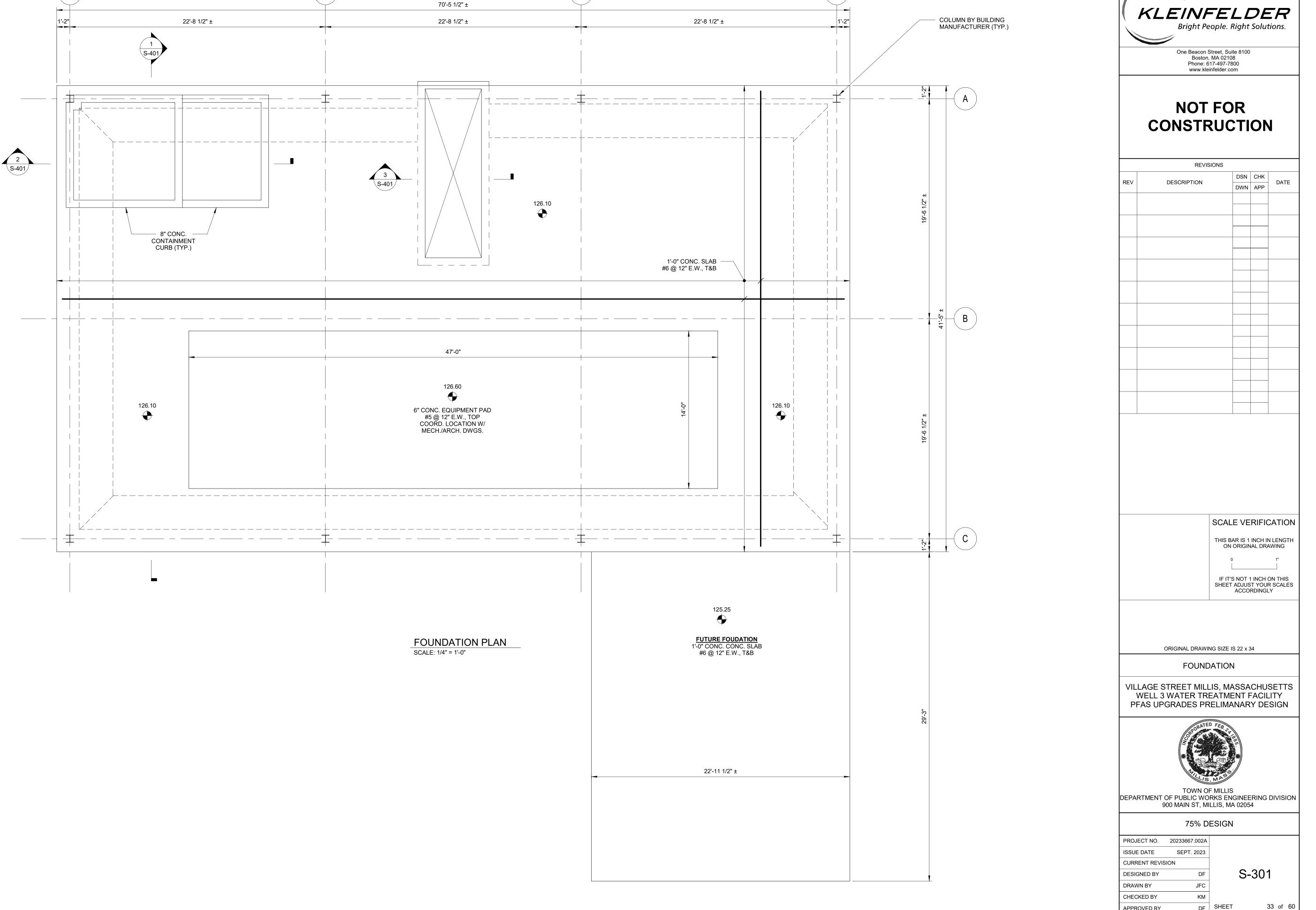

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

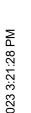
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

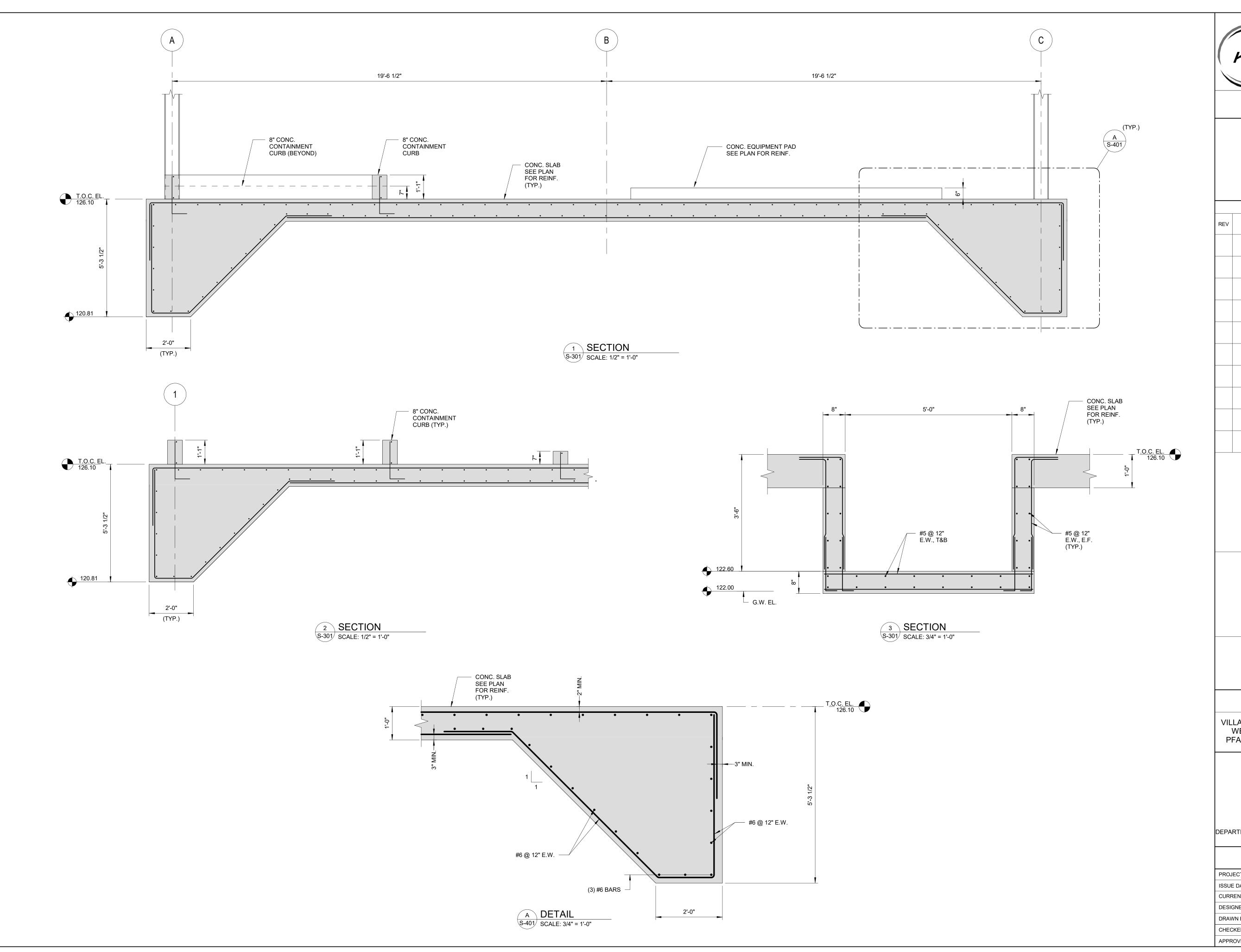
TYPICAL DETAIL SHEET 2 OF 2

VILLAGE STREET MILLIS, MASSACHUSETTS
WELL 3 WATER TREATMENT FACILITY
PFAS UPGRADES PRELIMANARY DESIGN



TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION
900 MAIN ST, MILLIS, MA 02054


75% DESIGN


PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REVIS	SION
DESIGNED BY	DF
DRAWN BY	JFC
CHECKED BY	KM
APPROVED BY	DF
	•

S-202

DF | SHEET APPROVED BY

One Beacon Street, Suite 8100 Boston, MA 02108 Phone: 617-497-7800 www.kleinfelder.com

NOT FOR CONSTRUCTION

REVISIONS

REV	DESCRIPTION	DSN DWN	CHK APP	DATE
	SCA	LE VE	RIFI	CATION
	THIS	BAR IS 1 N ORIGIN	INCH II IAL DRA	N LENGTH AWING
		0		1"
	IF I'	T'S NOT ? ET ADJUS ACCO	I INCH IT YOU! RDING!	R SCALES

ORIGINAL DRAWING SIZE IS 22 x 34

SECTIONS

VILLAGE STREET MILLIS, MASSACHUSETTS WELL 3 WATER TREATMENT FACILITY PFAS UPGRADES PRELIMANARY DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REVIS	SION
DESIGNED BY	DF
DRAWN BY	JFC
CHECKED BY	КМ
APPROVED BY	DF

S-401

		1	Г	
	ELECTRICAL SYMBOLS			ELECTRICAL SYMBOLS
F1	LINEAR LIGHTING FIXTURES "F1" INDICATES FIXTURE TYPE — TYPICAL FOR ALL FIXTURES "1" INDICATES CIRCUIT NUMBER — TYPICAL FOR ALL FIXTURE "a" INDICATES THE SWITCH CONTROL — TYPICAL FOR ALL FIXTURES		4F	NORMALY OPEN RELAY CONTACT
	"a" INDICATES THE SWITCH CONTROL — TYPICAL FOR ALL FIXTURES WALL MOUNTED LIGHTING FIXTURE.		#	NORMALLY CLOSED RELAY CONTACT
g	SURFACE OR PENDANT MOUNTED FIXTURE.		0 0	OPERATOR PUSH BUTTON NORMALLY OPEN CONTACT
\otimes \dashv	EMERGENCY EXIT SIGN		0 ـ ـ ٥	OPERATOR PUSH BUTTON NORMALLY CLOSED CONTACT
	EMERGENCY LIGHTING BATTERY UNIT WITH TWO LIGHT HEADS		7	PRESSURE SWITCH - CLOSES ON HIGH PRESSURE
4.	REMOTE EMERGENCY LIGHTING UNIT WITH TWO LIGHTING HEADS PROVIDE 3/4", 2#10, 1#10GND TO NEAREST THE EMEGENCY LIGHTING BATTERY UNIT		T	PRESSURE SWITCH - CLOSES ON LOW PRESSURE
Sa	SINGLE POLE SWITCH 120V, 20A "a" INDICATES THE SWITCH CONTROL			UNDERGROUND CONDUIT DUCT BANK
s ₂	2-POLE SWITCH 120V, 20A 1 POLE FOR ROOM LIGHT FIXTURES, 1-POLE FOR EXHAUST FAN CONTROL		LP1(1)	HOMERUN DESIGNATION TO PANEL LP1 CIRCUIT #1, WITH THE FOLOWING CONDUIT/WIRES UNLESS OTHERWISE NOTED: • 3/4"C WITH 2#12, 1#12GND FOR 20AMP SINGLE PHASE CIRCUITS AND ELECTRIC UNIT
S _{3a}	3-WAY SWITCH 120V, 20A			HEATER THERMOSTAT CONTROL • 3/4"C WITH 3#12, 1#12GND FOR 20AMP THREE PHASE CIRCUITS. • 3/4"C WITH 2#10, 1#10GND FOR 30AMP SINGLE PHASE CIRCUITS.
S _{4a}	"a" INDICATES THE SWITCH CONTROL 4-WAY SWITCH 120V, 20A			 3/4"C WITH 3#10, 1#10GND FOR 30AMP THREE PHASE CIRCUITS. 3/4"C WITH 2#8, 1#10GND FOR 40AMP & 50AMP SINGLE PHASE CIRCUITS.
S _{BG}	"a" INDICATES THE SWITCH CONTROL BREAK GLASSS STATION		_ × _	• 3/4"C WITH 3#8, 1#10GND FOR 40AMP & 50AMP THREE PHASE CIRCUITS. EYS TYPE CONDUIT SEAL
			SPD	SURGE PROTECTION DEVICE
TC TM	DIGITAL TIME CLOCK SWITCH MECHANICAL TIMER SWITCH			
	WALL MOUNTED DUAL TECHNOLOGY OCCUPANCY		Ø	UTILITY POLE
oc	SENSOR/SWITCH		Θ_{E}	UTILITY HANDHOLE, "E" REPRESENTS ELECTRICAL HANDHOLE, "C" REPRESENT COMMUNICATION HANDHOLE
S	LOW VOLTAGE SWITCH		\ \ <u>20</u>	MOLDED CASE CIRCUIT BREAKER, 3-POLE UNLESS
РМ	COMBINATION PHOTOCELL/MOTION DETECTOR SENSOR) 100 GFCI	OTHERWISE INDICATED, "20" INDICATES TRIP AMPERE RATING, "100" INDCATES FRAME SIZE, "GFCI" INDICATES CIRCUIT BREAKER TO HAVE GROUND FAULT CIRCUIT
©	CEILING MOUNTED DUAL TECHNOLOGY OCCUPANCY SENSOR			INTERRUPT DRY TYPE TRANSFORMER
	DUPLEX RECEPTACLE, WEATHER-RESISTANT 120V, 20A WITH WEATHERPROOF COVER, "GF" INDICATES GROUND FAULT TYPE "1" INDICATES CIRCUIT NUMBER — TYPICAL FOR ALL RECEPTACLES			DICT THE TRANSFORMER
\blacksquare	DUPLEX RECEPTACLE 120V, 20A		0	3/4"ø X 10'-0" COPPER CLAD GROUND ROD
₩P	(2) DUPLEX (QUAD) RECEPTACLES, 120V, 20A "WP" INDICATES WITH WEATHERPROOF COVER		=	BUILDING GROUNDING SYSTEM
Φ_{TL}	SIMPLEX RECEPTACLE, WEATHER—RESISTANT 120V, 20A WITH WEATHERPROOF COVER "TL" INDICATES TWIST LOCK TYPE		(10)	MOTOR, "10" INDICATES HORSEPOWER RATING
□ ₃₀	UNFUSED DISCONNECT SWITCH, "30" INDICATES 30 AMP RATING, PROVIDE 3—POLE, UNLESS OTHERWISE INDICATED.		\(\sigma xx\)	CABLE/CONDUIT DESIGNATION, "XX" REFERS CABLE CONDUIT REFERENCE, REFER TO CABLE/CONDUIT AND DUCT/CABLE SCHEDULES.
F) ₂₀	FUSED DISCONNECT SWITCH, "20" INDICATES 20 AMP FUSE RATING, PROVIDE 3—POLE UNLESS OTHERWISE INDICATED.		OS-XXXX YYY	OPERATOR STATION (SUPPLIED BY DIV. 16 UNO), "XXXX" REFERS TO TAGNAME ID, "YYY" REFERS TO THE TYPE OF OPERATOR STATION
•	3-PHASE RECEPTACLE			UNLESS OTHERWISE NOTED INSTRUMENATION OR
MCP FVNR	WALL MOUNTED COMBINATION MOTOR STARTER WITH MOTOR CIRCUIT PROTECTOR, "FVNR" INDICATES TYPE OF		XX-XXXX	PROCESS EQUIPMENT (SUPPLIED BY OTHER DIVISIONS) "XX-XXXX" REFERS TO TAGNAME ID
	MOTOR STARTER		E	GENERATOR EMERGENCY STOP
MCP FVNR	MOTOR STARTER WITH MOTOR CIRCUIT PROTECTOR, "FVNR" INDICATES TYPE OF MOTOR STARTER		0	OCCUPIED/UNOCCUPIED SELECTOR SWITCH. (SUPPLIIED BY DIV. 16)
VFD	ENCLOSED VARIABLE FREQUENCY DRIVE		(T)	THERMOSTAT (SUPPLIED BY DIV. 15)
			M	MOTOR OPERATED DAMPER (SUPPLIED BY DIV. 15)
Sm	MANUAL MOTOR STARTER 120V, 20A		<u>\$</u>	MANUAL WALL SWITCH (BY DIV. 15)
J	JUNCTION BOX		S	REFRIGERANT SENSOR (BY DIV. 15)
HH	NON-UTILITY POLYMER CONCRETE HAND HOLE		MPCP	METERING PUMP CONTROL PANEL (SUPPLIED BY DIV. 11)
(AR1)	ALARM RELAY, "AR1" REFERS TO RELAY NAME DESIGNATION		CFS	CHEMICAL FILL STATION (SUPPLIED BY DIV. 13)
CR1)	CONTROL RELAY, "CR1" REFERS TO RELAY NAME DESIGNATION			ONLINIONE THE STATION (SOLT ELED BY DIV. 13)
M	MOTOR START RELAY		ISBP	INTRINSICALLY SAFE BARRIER PANEL (SUPPLIED BY DIV. 13)
TR1	TIMING RELAY, "TR1" REFERS TO RELAY NAME DESIGNATION		F XKW	ELECTRIC UNIT HEATER, "X" INDICATES UNIT ELECTRIC COIL RATING (SUPPLIED BY DIV. 15)
			XXX 1 P11-LP (21)	EQUIPMENT CIRCUIT NUMBER DESIGNATION TO PANEL LP1-LP CIRCUIT #21,

FII	RE ALARM / SECURITY SYSTEM SYMBOLS
F	MANUAL FIRE ALARM STATION
E⊲	FIRE ALARM AUDIO/VISUAL DEVICE
F⊲∨	FIRE ALARM VISUAL ONLY DEVICE
D H	FIRE ALARM BEACON
S	SMOKE DETECTOR
S	DUCT SMOKE DETECTOR
	REMOTE TEST STATION AND ALARM FOR DUCT SMOKE DETECTOR
\oplus	HEAT DETECTOR, COMBINATION RATE—OF—RISE AND FIXED TEMPERATURE
©	CARBON MONOXIDE DETECTOR
М	INPUT MONITORING MODULE
С	RELAY CONTROL MODULE
FACP	FIRE ALARM CONTROL PANEL
FAA	FIRE ALARM ANNUNCIATOR PANEL
((•)) DACT	CELLUAR DIGITAL ALARM COMMUNICATOR TRANSMITTER
仓	MASTER BOX
К	KEY DEPOSITORY - KNOX BOX
FS	FLOW SWITCH
TS	TAMPER SWITCH
⊦®	24V ELECTRIC SPRINKLER BELL, PROVIDED BY FIRE PROTECTION FSB, PROVIDE AND MOUNT IN WEATHERPROOF BACKBOX
DS	MAGNETIC DOOR SWITCH
KP	KEY PAD
Ø +	SECURITY ALARM CONTROL PANEL
	TELE/DATA & CCTV SYMBOLS
1 T V 2D	WALL MOUNTED DATA OUTLET, 2D INDICATES (2) CAT6 TERMINAL DATA CONNECTORS, 1T INDICATES (1) CAT6 TERMINAL TELEPHONE CONNECTOR

TELE/DATA & CCTV SYMBOLS WALL MOUNTED DATA OUTLET, 2D INDICATES (2) CAT6 TERMINAL DATA CONNECTORS, 1T INDICATES (1) CAT6 TERMINAL TELEPHONE CONNECTOR CCTV CLOSED CIRCUIT TELEVISION CAMERA - PROVIDED BY DIV. 13 DVRS DIGITAL VIDEO RECORDING SERVER - PROVIDED BY DIV. 13 POES POWER OVER ETHERNET SWITCH - PROVIDED BY DIV. 13

C

CACP

CHEMICAL ALARM SYSTEM SYMBOLS
MANUAL CHEMICAL ALARM STATION
CHEMICAL ALARM AUDIO/VISUAL DEVICE
CHEMICAL ALARM CONTROL PANEL

Signe	d By:	#	12345
REV	DESCRIPTION		CHK APP
			\dashv
			\dashv
			\dashv
			\dashv
			\Box
			\dashv
			\dashv

THIS BAR IS 1 INCH IN LENGTH
ON ORIGINAL DRAWING

0 1"

SCALE VERIFICATION

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL

LEGEND AND GENERAL NOTES

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO. 20233667.002A

ISSUE DATE SEPT. 2023

CURRENT REVISION
DESIGNED BY MC

DRAWN BY RLB

CHECKED BY MC

APPROVED BY ABB SHEET

E-001

-T 35

GENERAL NOTES

- GENERAL CONTRACTOR TO PROVIDE CONCRETE MOUNTING AND HOUSEKEEPING PADS ON ALL FLOOR OR GRADE MOUNTED ELECTRICAL EQUIPMENT, THE FOLLOWING EQUIPMENT IS THE MINIMUM REQUIREMENT FOR HOUSEKEEPING PADS. ADDITIONAL PADS MAYBE REQUIRED BASED ON THE ELECTRICAL CONTRACTORS MOUNTING METHODS, ELECTRICAL CONTRACTOR SHALL COORDINATE WITH GENERAL CONTRACTOR FOR ALL HOUSEKEEPING PAD SIZES AND LOCATIONS. 1.1. DRY TYPE TRANSFORMERS
- ALL CONDUIT AND EQUIPMENT SHALL BE INSTALLED AND GROUNDED IN ACCORDANCE WITH THE LATEST EDITION OF THE NATIONAL ELECTRICAL CODE AND APPLICABLE LOCAL CODES.
- BONDING JUMPERS, CONDUIT CLAMPS AND POINTS OF ATTACHMENT ARE NOT SHOWN ON DRAWINGS. SIZE BONDING JUMPERS IN ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE. THE POINTS OF ATTACHMENT OF THE GROUND CLAMPS SHALL BE ACCESSIBLE LOCATIONS.
- EQUIPMENT & CONDUIT INSTALLATIONS ARE SHOWN DIAGRAMMATICALLY ONLY AND SHALL BE INSTALLED IN A MANNER TO PREVENT CONFLICTS WITH EQUIPMENT AND STRUCTURAL CONDITIONS. EXPOSED CONDUITS SHALL BE INSTALLED PARALLEL TO BEAMS AND WALLS.
- CONDUITS SHALL BE TERMINATED SO AS TO PERMIT NEAT CONNECTIONS TO MOTORS AND OTHER EQUIPMENT.
- 6. NO CONDUIT SMALLER THAN 3/4" PIPE SIZE NOR WIRE SMALLER THAN NO. 12 A.W.G. SHALL BE USED UNLESS OTHERWISE NOTED.
- 7. RECEPTACLES AND SWITCHES SHALL BE MOUNTED 45" ABOVE FINISHED FLOOR.
- THE WIRING AND BLOCK DIAGRAMS, QUANTITY AND SIZE OF WIRES AND CONDUIT REPRESENT A SUGGESTED ARRANGEMENT BASED UPON SELECTED STANDARD COMPONENTS OF ELECTRICAL AND PROCESS EQUIPMENT. MODIFICATIONS ACCEPTABLE TO THE ENGINEER MAY BE MADE BY THE CONTRACTOR TO ACCOMMODATE EQUIPMENT ACTUALLY PURCHASED. THE BASIC SEQUENCE AND METHOD OF CONTROL MUST BE MAINTAINED AS INDICATED ON THE DRAWINGS AND/OR SPECIFICATIONS.

DEMOLITION NOTES

UNLESS OTHERWISE NOTED, ALL EXISTING ELECTRICAL SYSTEMS (POWER, LIGHTING, LOW VOLTAGE, CONTROLS, ETC) AND ASSOCIATED EQUIPMENT INDICATED WITH HATCH MARKS IS TO BE DEMOLISHED. DISCONNECT AND DE-ENERGIZE THE EQUIPMENT. REMOVE THE EQUIPMENT TO BE DEMOLISHED OR SALVAGED PER SECTION 02050. ALL CONTROL DEVICES, CONDUIT, CABLING, BOXES, SUPPORTS, ETC, ASSOCIATED WITH THE DEMOLISHED EQUIPMENT SHALL BE REMOVED. THE CONDUIT AND CABLING SHALL BE REMOVED BACK TO SOURCE.

J OR JB

JPB

LE

LIT

LL

LS

LT

MC

MCC

MH

MFR

MS

NTS

OEM

ОН

OL

OS

PΒ

PBE

PBL

PBM

PIT

PL

JUNCTION BOX

LEVEL ELEMENT

LOW LEVEL

MANHOLE

MANUFACTURER

NOT TO SCALE

OVERHEAD

LEVEL SWITCH

LEVEL TRANSMITTER

JOG PUSHBUTTON

LEVEL INDICATOR TRANSMITTER

MOTOR CONTROLLER (STARTER)

MOTION OR MOISTURE SENSOR

MOTOR OVERLOAD HEATER

CONTACT TYPE, STOP START

OPERATOR STATION

ORIGINAL EQUIOPMENT MANUFACTURE SUPPLIED

PUSHBUTTON CONTROL STATION MOMENTARY

PUSHBUTTON CONTROL STATION MAINTAINED EMERGENCY STOP TYPE, TWIST TO RELEASE

PUSHBUTTON CONTROL STATION MOMENTARY TYPE WITH LOCK-OUT DEVICE, STOP-START

PUSHBUTTON CONTROL STATION MAINTAINED CONTACT TYPE, STOP START

PUSHBUTTON CONTROL STATION MOMENTARY

PRESSURE INDICATOR TRANSMITTER

TYPE WITH LOCK-OUT DEVICE, STOP

MOTOR CONTROL CENTER

- NO DEVICE OR EQUIPMENT INDICATED FOR DEMOLITION WILL BE REUSED OR SALVAGED UNLESS SPECIFICALLY NOTED AS SUCH. ALL EQUIPMENT REMOVED SHALL BE REMOVED FROM SITE AND PROPERLY DISPOSED OF, PRIOR TO REMOVAL OF EQUIPMENT COORDINATE WITH OWNER FOR ANY EQUIPMENT THE OWNER WILL KEEP.
- EXISTING EQUIPMENT INDICATED ON THE DEMOLITION PLANS ARE BASED ON SITE OBSERVATIONS AND IT IS NOT THE INTENTION OF THESE DRAWINGS TO SHOW ALL EQUIPMENT AND MATERIALS TO BE DISCONNECTED AND/OR REMOVED.
- ALL UNDERGROUND CONDUIT SHALL BE CUT BELOW GRADE, CAPPED AND BACKFILLED WITH DIRT TO MATCH GRADE. ALL CONDUIT STUBBING UP FROM CONCRETE SLAB SHALL BE CUT AND CAPPED AND SLAB LEVEL. ALL WIRING SHALL BE REMOVED COMPLETELY.

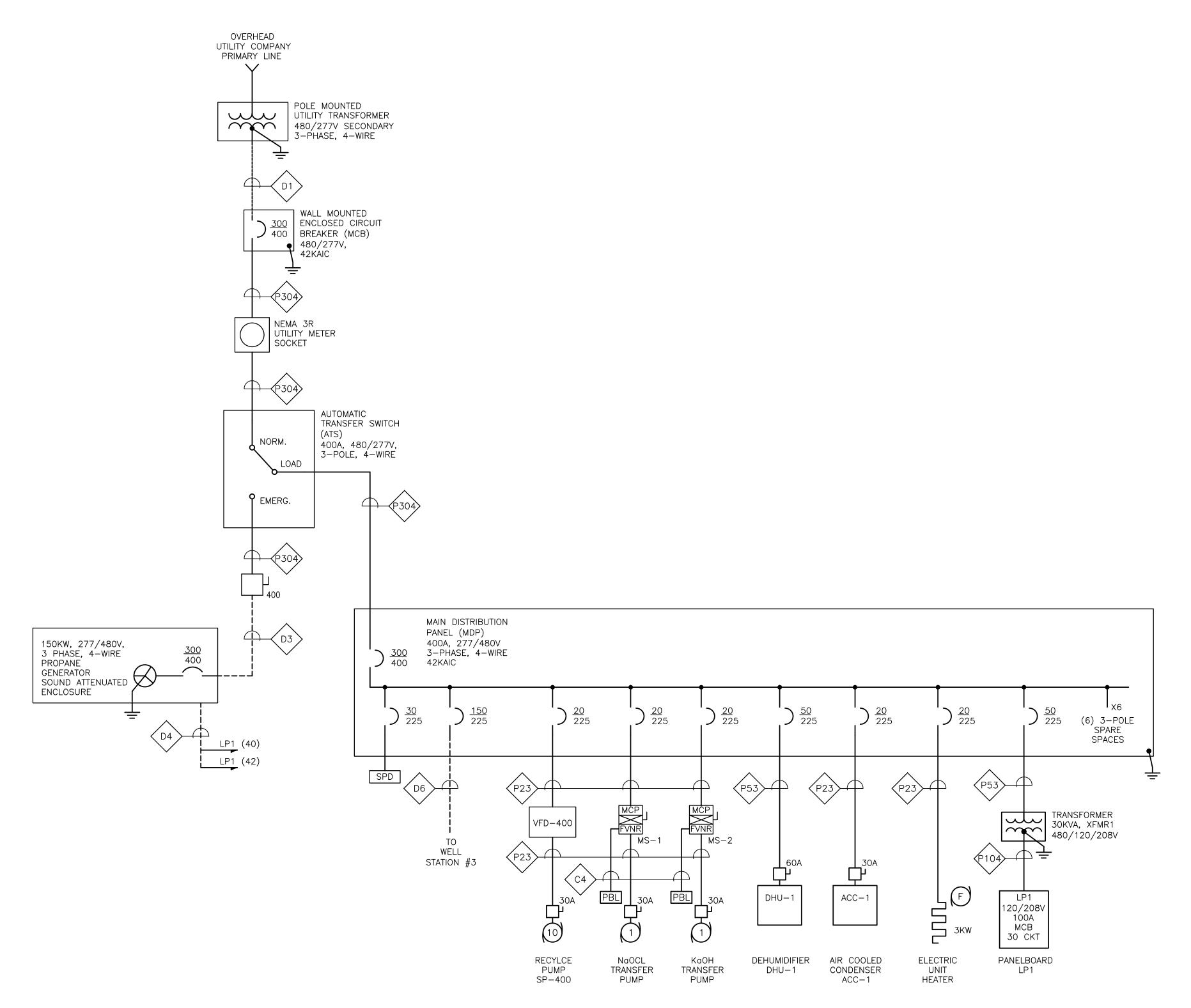
ABBREVIATIONS				
(2)1"C, 3#8, #10GND	2, 1-INCH CONDUITS EACH CONDUIT CONTAINING 3-#8 AWG WIRES AND 1-#10 GROUND CONDUCTOR	RGS	RIGID GALVANIZED STEEL	
3/4" CE	EMPTY CONDUIT. NUMERAL DENOTES SIZE	RVNR	REDUCED VOLTAGE NON-REVERSING	
AFF	ABOVE FINISHED FLOOR	SPD	SURGE SUPPRESSOR DEVICE	
AFG	ABOVE FINISHED GRADE	SOV	SOLENOID VALVE	
AR	ALARM RELAY	s/s	SOFT STARTER	
ATS	AUTOMATIC TRANSFER SWITCH	TB	TERMINAL BOX	
CR	CONTROL RELAY	TD	MOTOR TEMPERATURE DETECTOR	
CP	CONTROL PANEL	TR	TIMING RELAY	
DRG. DWG.	DRAWING	TS TSP	TEMPERATURE SWITCH TWISTED SHEILDED PAIR	
EAN	EXCEPT AS NOTED	TSTW	TWO SPEED TWO WINDING	
EC	ELECTRICAL CONTRACTOR	TYP	TYPICAL	
ETM	ELAPSED TIME METER	UG	UNDERGROUND	
FE	FLOW ELEMENT	UNO	UNLESS OTHERWISE NOTED	
FIT	FLOW INDICATOR TRANSMITTER	VFD	VARIABLE FREQUENCY DRIVE	
		WP	WATER PROOF	
FS	FLOW SWITCH	WHM	WATT HOUR UTILITY METER	
FT	FLOW TRANSMITTER	XFMR	TRANSFORMER	
FVNR	FULL VOLTAGE NON-REVERSING			
GND, GRD	GROUNDING CONDUCTOR (EQUIPMENT)			
НОА	HAND-OFF-AUTOMATIC			
нн	HANDHOLE			

Signed By: # 12345 REV DESCRIPTION DSN CHK DWN APP DATE		KLEINI Bright F				
REV DESCRIPTION DSN CHK DWN APP DATE Wechanical/Electrical Engineers 1:96 Grossman Drive, Snic 309 86/17 221-9220 Wech: www.sar.com SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
REV DESCRIPTION DSN CHK DWN APP DATE Wechanical/Electrical Engineers 1:96 Grossman Drive, Snic 309 86/17 221-9220 Wech: www.sar.com SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
REV DESCRIPTION DSN CHK DWN APP DATE Wechanical/Electrical Engineers 1:96 Grossman Drive, Snic 309 86/17 221-9220 Wech: www.sar.com SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
Mechanical/Electrical Engineers 15/9 Crossman Drive. Suite 30/9 Web: www.asr.com SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR	S	Signed By:		#	‡ 12345	
Mechanical/Electrical Engineers 150 Grossman Drive, Satie 309 Braintree, Massachusetts 2184 web: www.sar.com SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR	REV	DESCRIPTION				DATE
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR				DWN	APP	
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING O 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" L 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR			150 Gross Braintree, 617 221-92	man Drive , Massachu 220	Suite 309	
THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING 0 1" L 1" IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR		ENGINEERING, INC.	web: www	.sar.com		
ON ORIGINAL DRAWING 0 1" L 1 IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR			SCAL	E VE	RIFIC	ATION
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR						
SHEET ADJUST YOUR						1"
SCALES ACCORDINGLY			SH	EET A	JUST \	OUR
			SCA	LES A	JUURD	INGLY

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL GENERAL NOTES

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN


TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO. 20233667.002A ISSUE DATE SEPT. 2023 CURRENT REVISION **DESIGNED BY** DRAWN BY **CHECKED BY** APPROVED BY

E-002

ABB | SHEET 36 of 60

TREATMENT BUILDING ONE LINE DIAGRAM

NOT TO SCALE

Signed By: ----# 12345

REV	DESCRIPTION	DSN		DATE
1\L\	DEGOTAL FIGHT	DWN	APP	DATE

SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

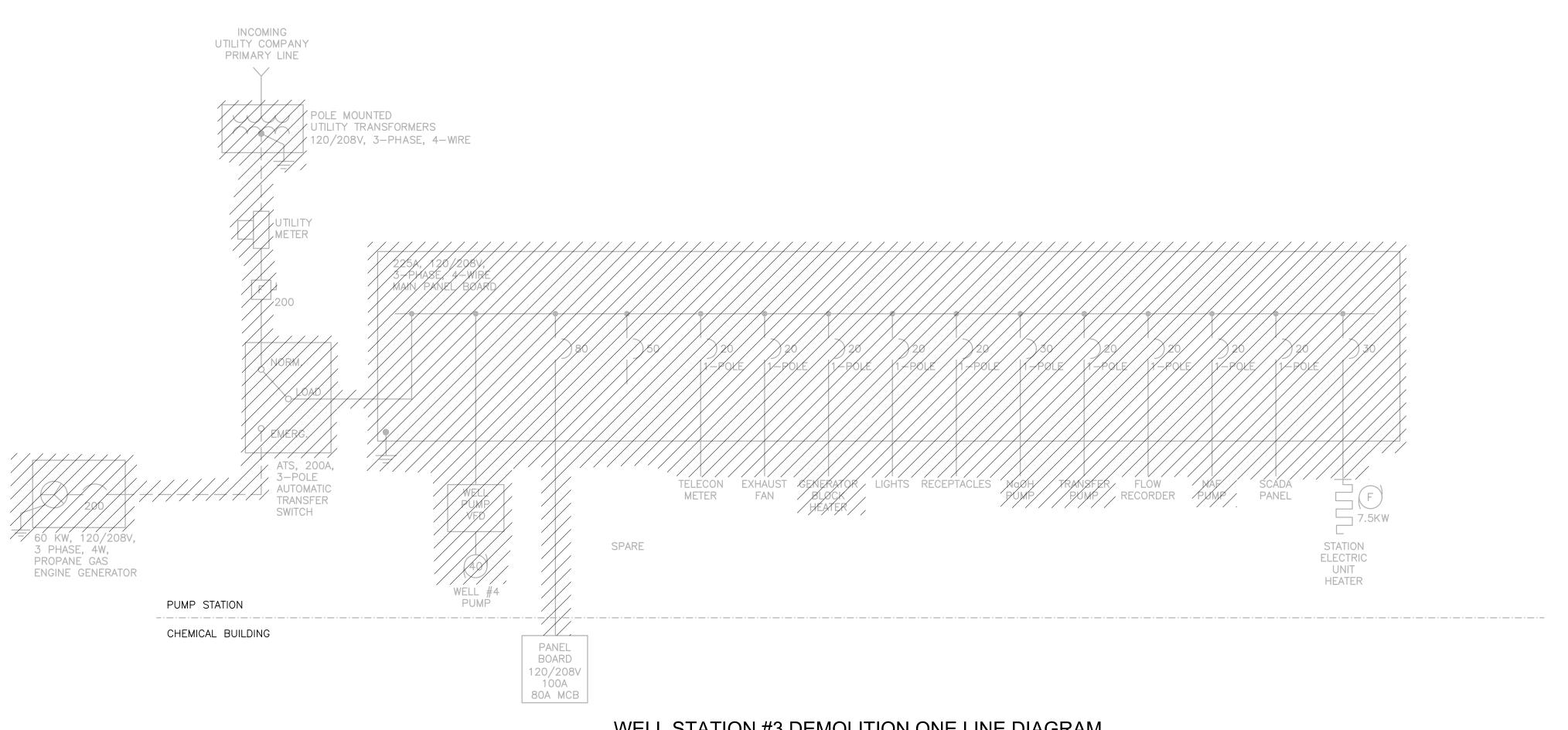
ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL TREATMENT BUILDING ONE LINE DIAGRAM

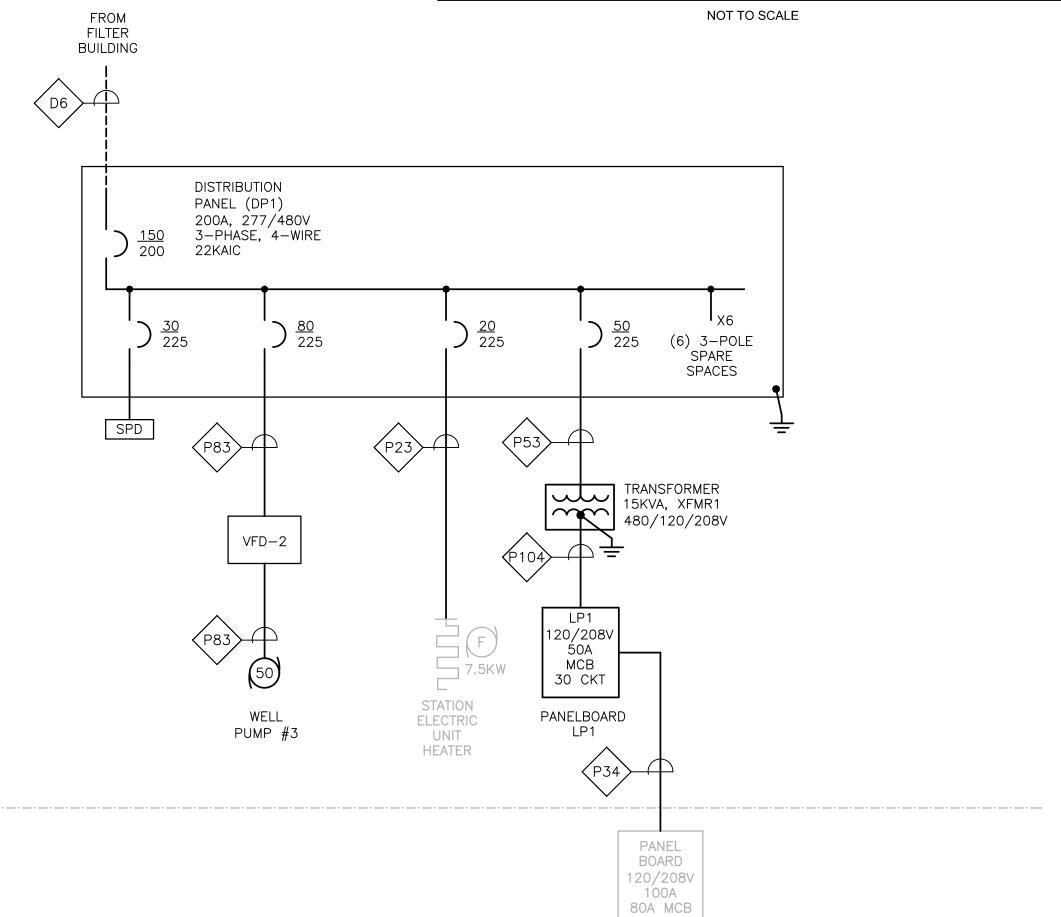
TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN


PROJECT NO. 20233667.002A ISSUE DATE SEPT. 2023 CURRENT REVISION DESIGNED BY DRAWN BY

CHECKED BY


APPROVED BY

E-003

ABB SHEET

WELL STATION #3 DEMOLITION ONE LINE DIAGRAM

WELL STATION #3 ONE LINE DIAGRAM

PUMP STATION

CHEMICAL BUILDING

NOT TO SCALE

Signed By: ----# 12345

REV	DESCRIPTION	DSN	CHK	DATE
NLV		DWN	APP	DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS

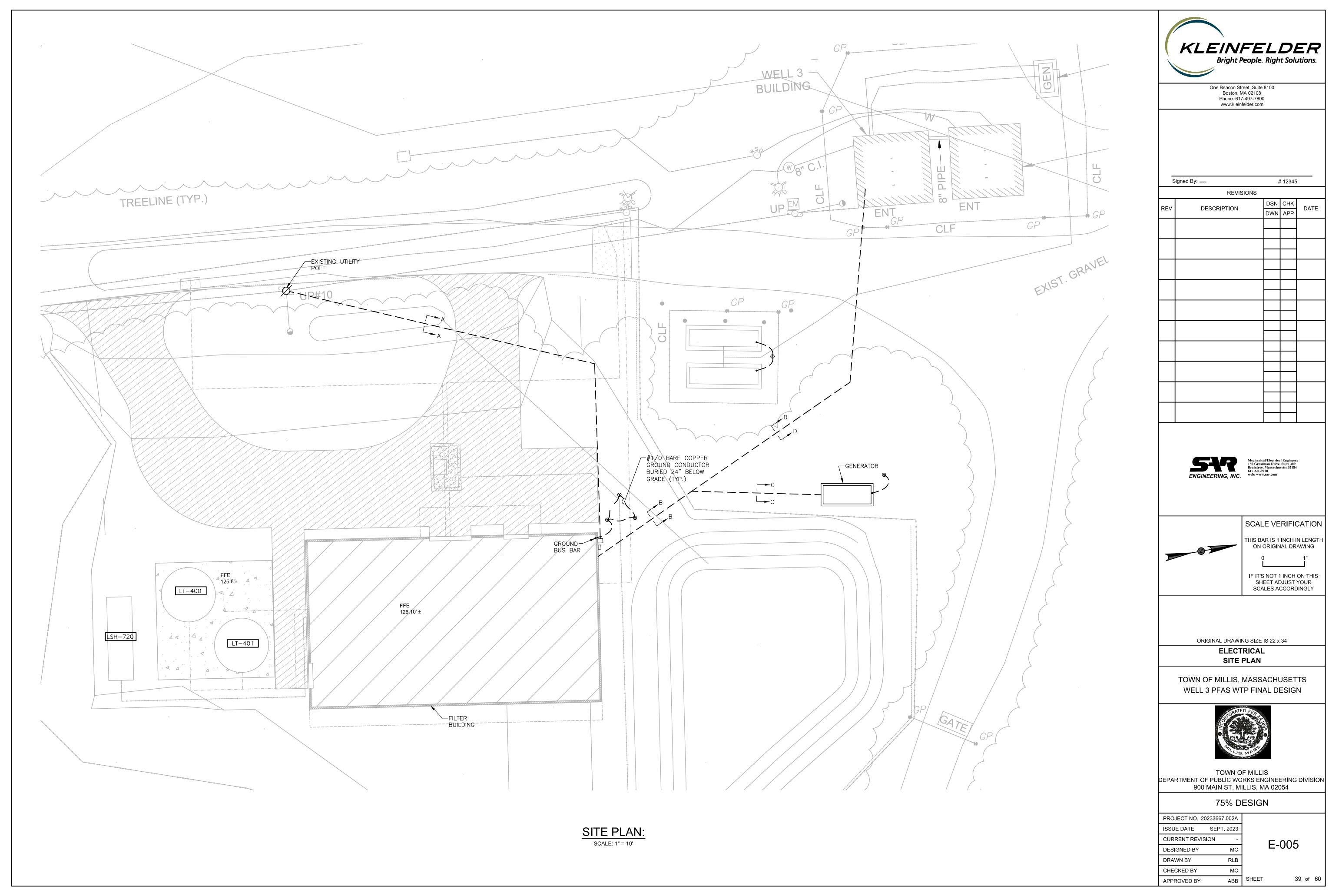
SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

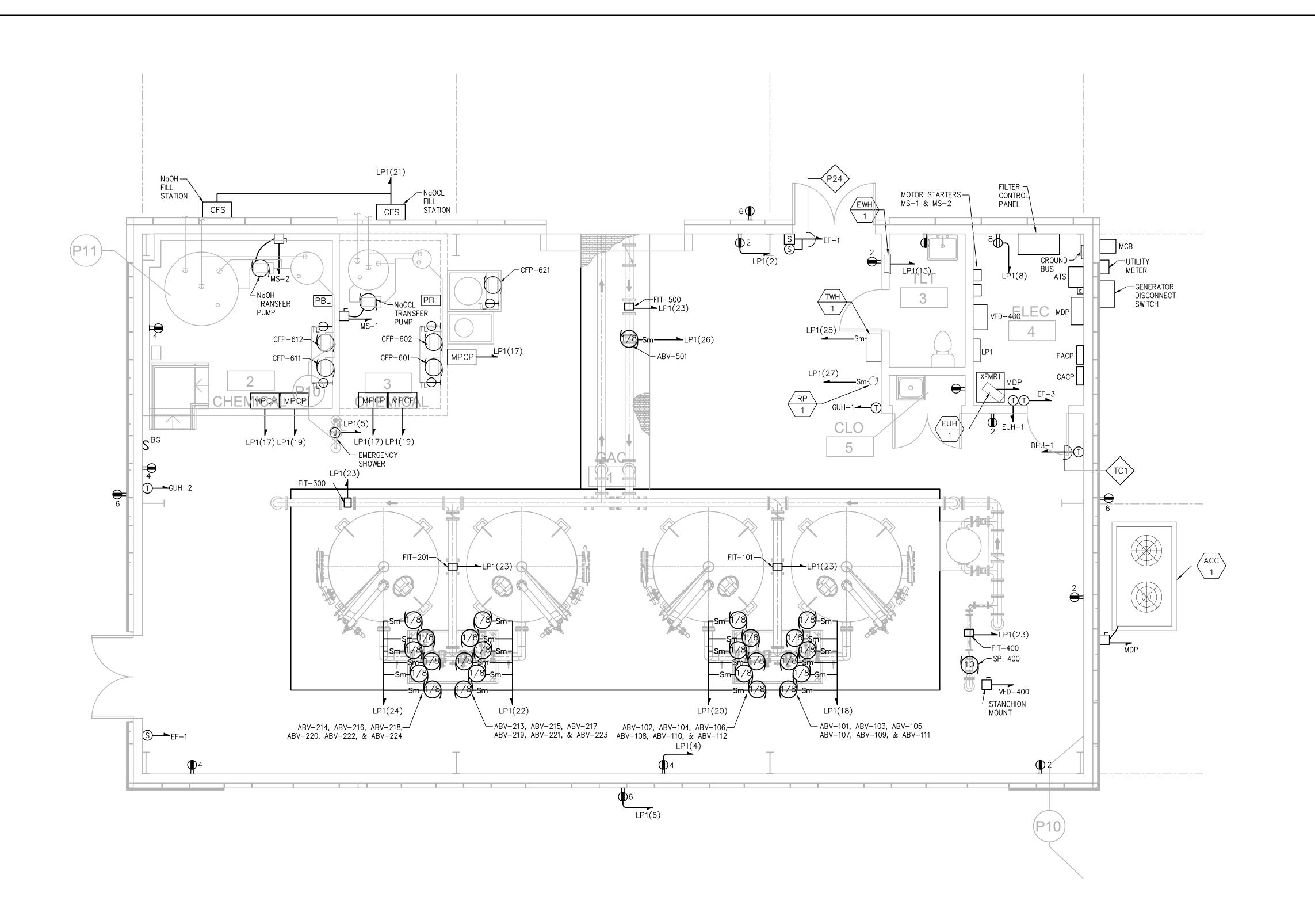
WELL STATION #3 ONE LINE DIAGRAMS

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

ELECTRICAL


TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

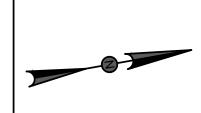

	,
PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT RE	/ISION -
DESIGNED BY	МС
DRAWN BY	RLB
CHECKED BY	МС
APPROVED BY	/ ABB

E-004

ABB SHEET 38 of 60

SCALE VERIFICATION

FUTURE



Signed By: ---- # 12345

REV	DESCRIPTION	DSN	CHK	DATE
KEV	DESCRIPTION	DWN	APP	DATE

T.....

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH
ON ORIGINAL DRAWING

0 1"
IF IT'S NOT 1 INCH ON THIS
SHEET ADJUST YOUR
SCALES ACCORDINGLY

SCALE: 1/4" = 1'-0'SCALE IN FEET

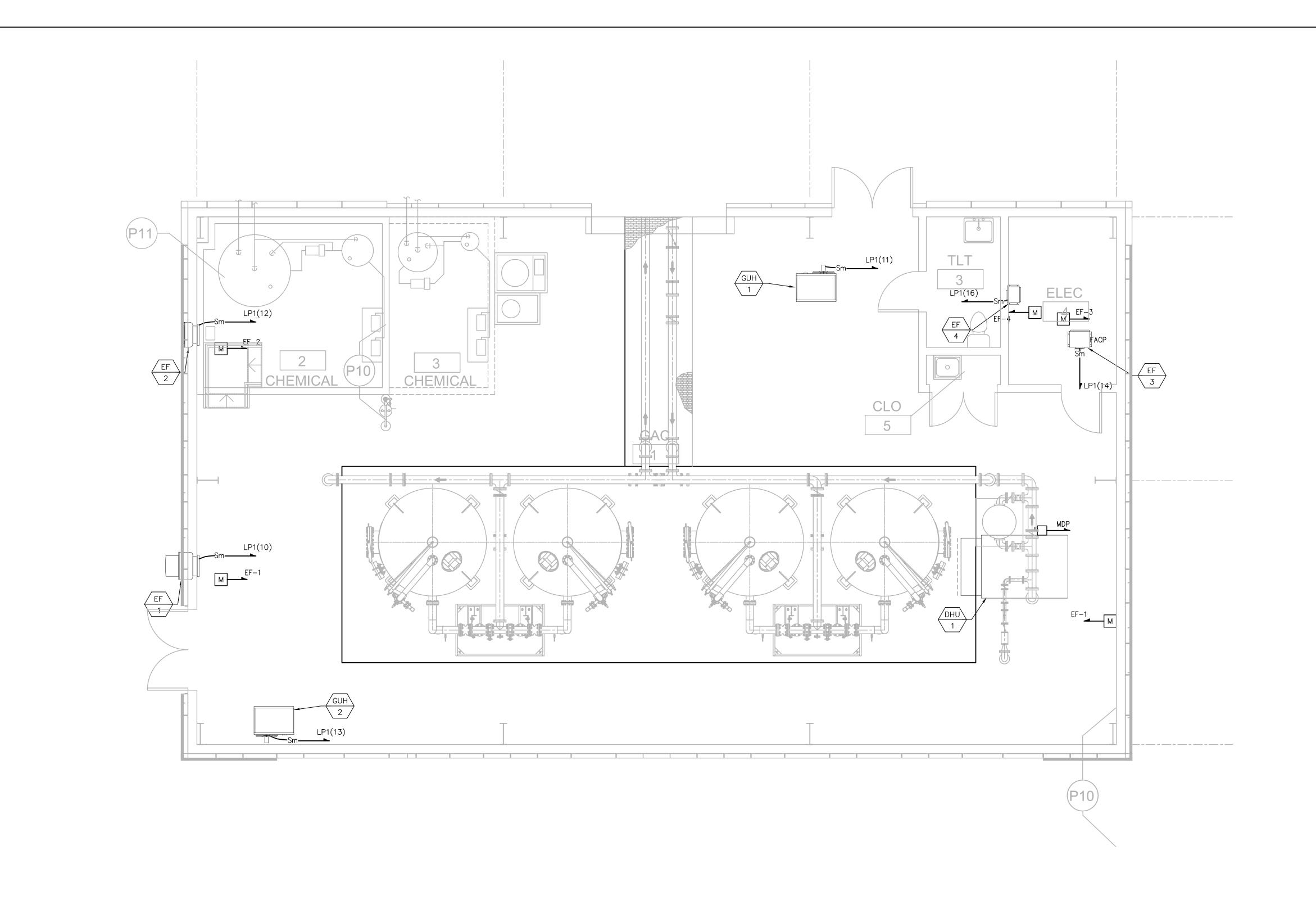
ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL

LOWER LEVEL FLOOR POWER PLAN

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054


75% DESIGN

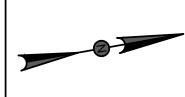
PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REV	/ISION -
DESIGNED BY	МС
DRAWN BY	RLB
CHECKED BY	МС

APPROVED BY

E-101

ABB SHEET 40 of 60

FUTURE 5

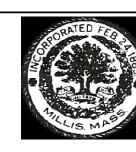


Signed By: ----# 12345

REV	DESCRIPTION	DSN	CHK	DATE
NL V	DESCRIPTION	DWN	APP	DATE

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY


SCALE: 1/4" = 1'-0'SCALE IN FEET

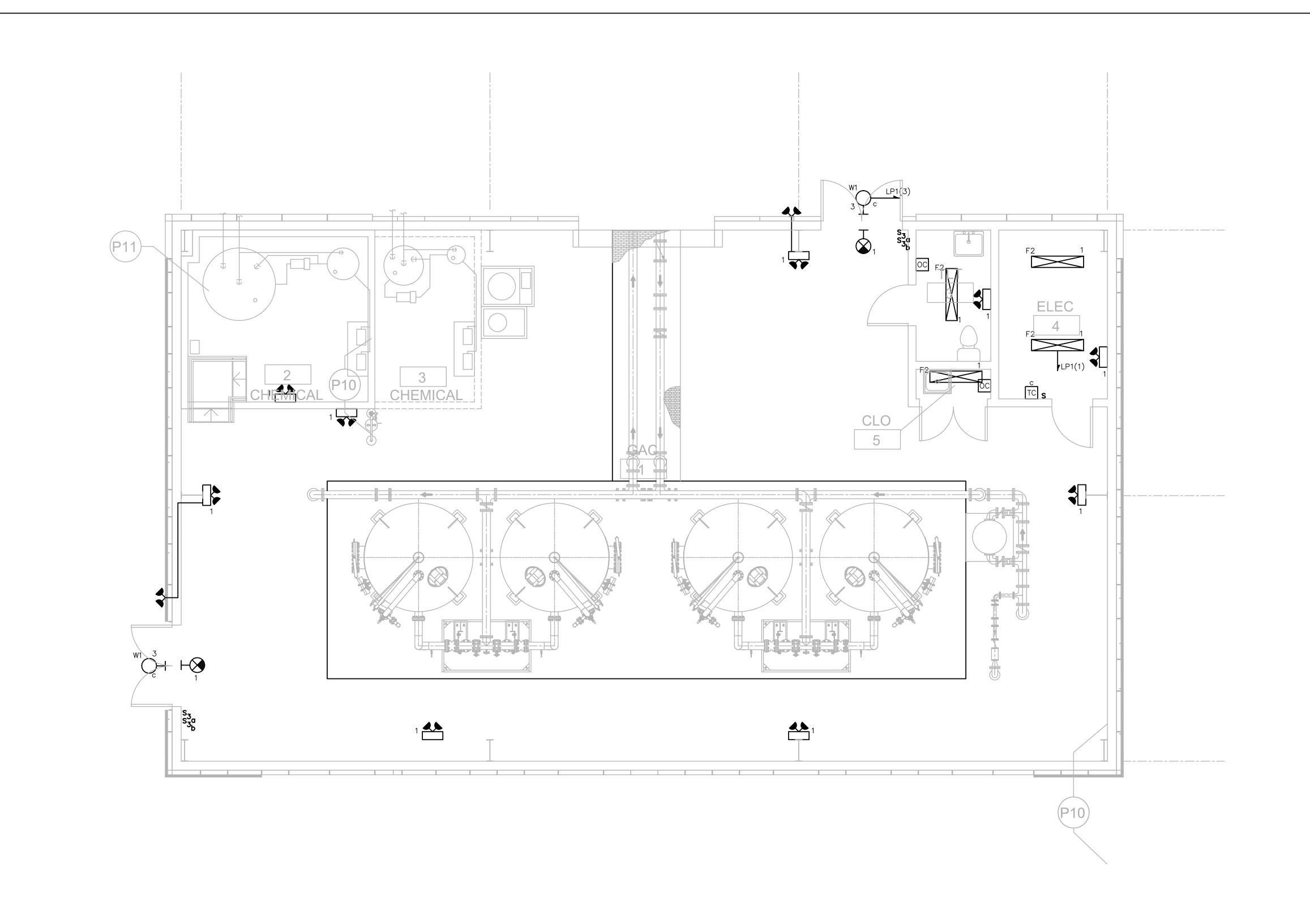
ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL

UPPER LEVEL FLOOR POWER PLAN

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

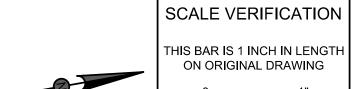

75% DESIGN

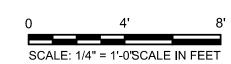
	PROJECT NO.	20233667.002A
	ISSUE DATE	SEPT. 2023
	CURRENT REV	/ISION -
	DESIGNED BY	МС
	DRAWN BY	RLB
	CHECKED BY	MC

APPROVED BY

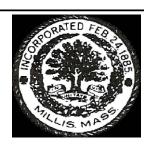
E-102

ABB SHEET




Signed By: ---- # 12345

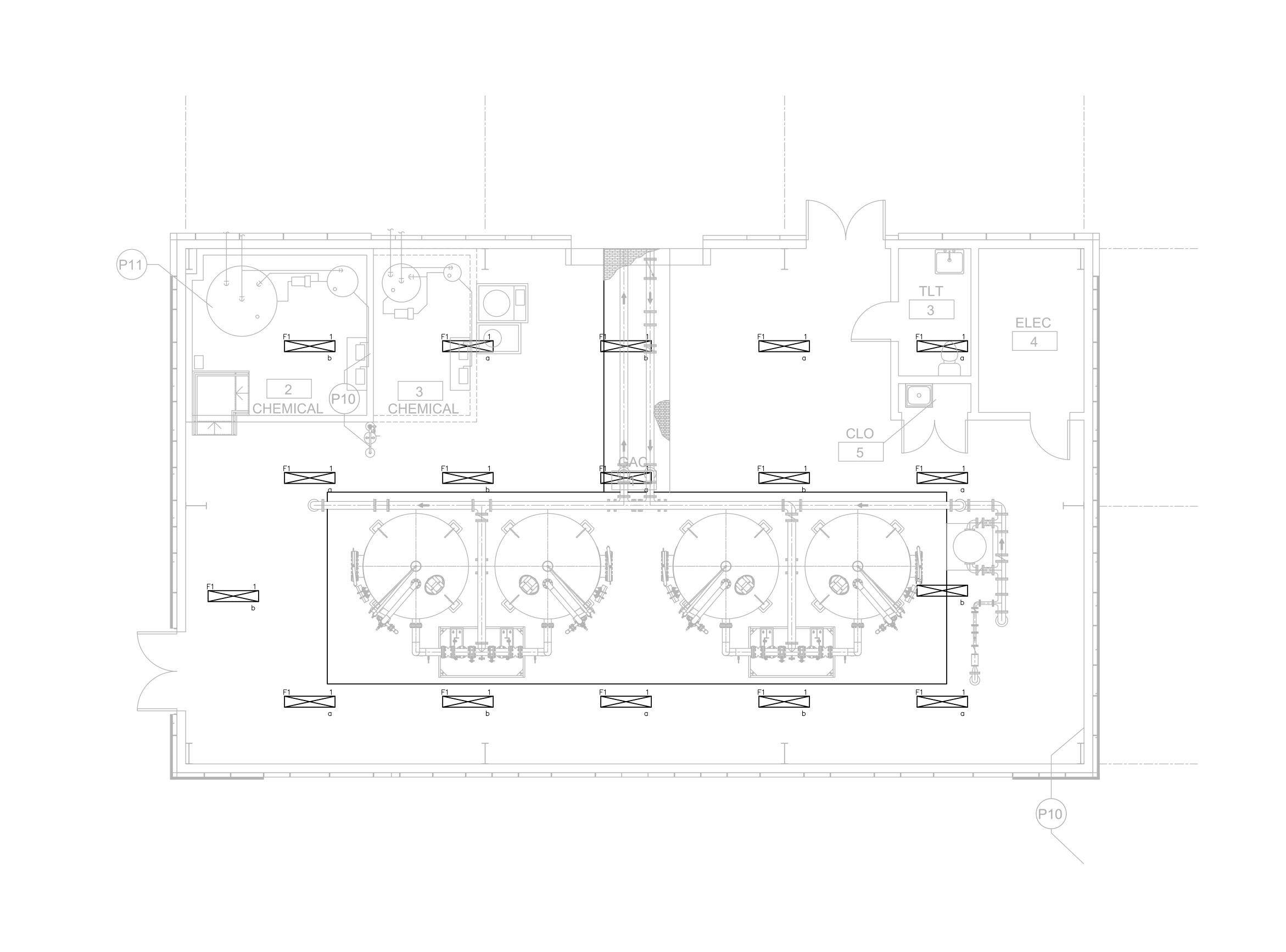
REV	DESCRIPTION	DSN	CHK	DATE
KLV	DESCRIPTION	DWN	APP	DATE


IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL LIGHTING FLOOR PLAN

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN


TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

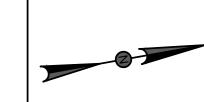
75% DESIGN

PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REV	'ISION -
DESIGNED BY	MC
DRAWN BY	RLB
CHECKED BY	MC
APPROVED BY	ABB

E-201

ABB SHEET 42 of 60

KLEINFELDER
Bright People. Right Solutions.


Signed By: ---- # 12345

REV	DESCRIPTION	DSN	CHK	DATE
KLV	DESCRIPTION	DWN	APP	DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

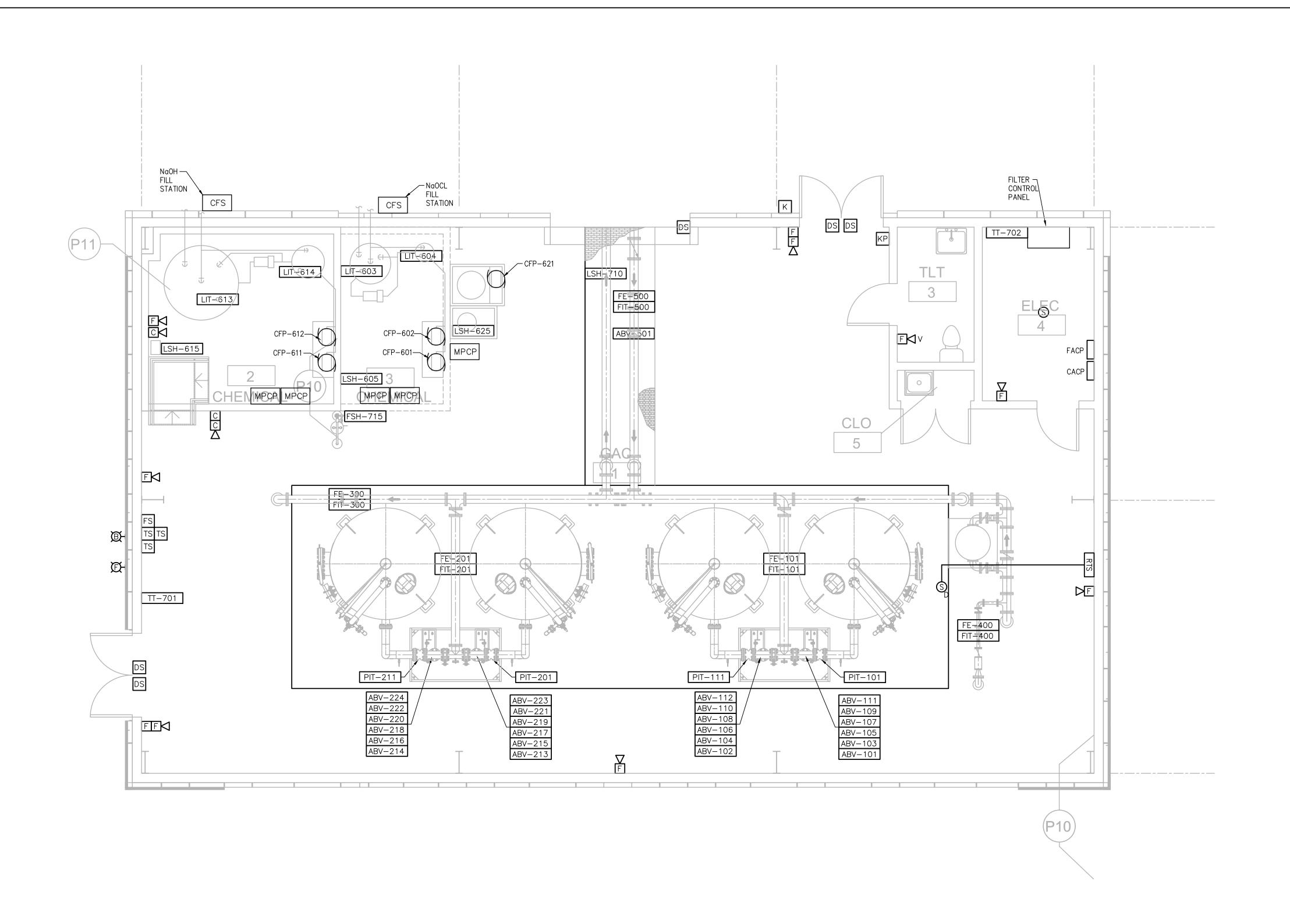
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

0 4' 8'
SCALE: 1/4" = 1'-0'SCALE IN FEET

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL LIGHTING UPPER LEVEL PLAN

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN


TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO.	20233667.00
ISSUE DATE	SEPT. 20
CURRENT REV	/ISION
DESIGNED BY	N
DRAWN BY	R
CHECKED BY	N
APPROVED BY	′ Al

E-201

ET 43 of 60

FUTURE 5

Signed By: ---- # 12345

DESCRIPTION	DSN	снк	
DESCRIPTION		-···\	DATE
	DWN	APP	DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

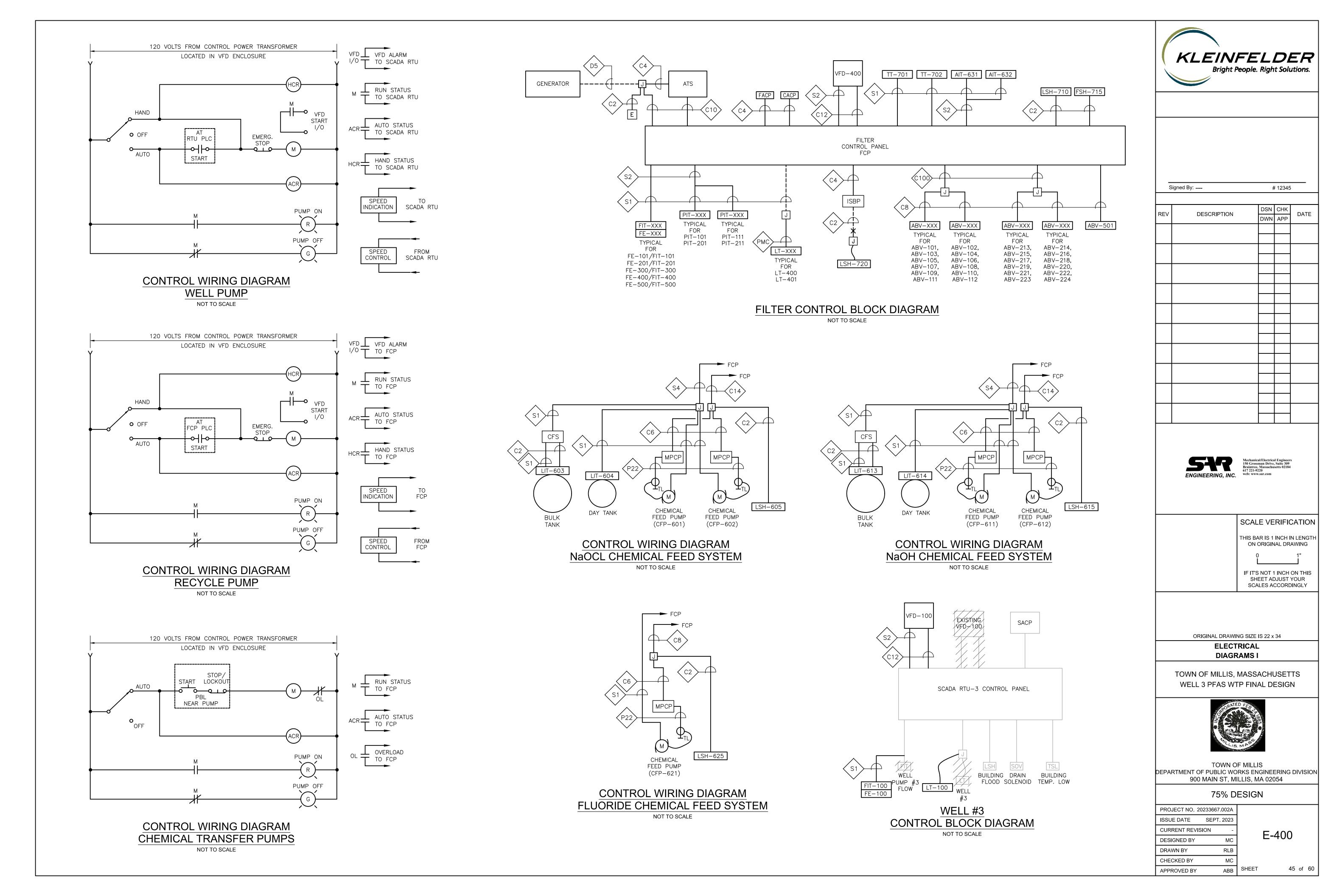
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

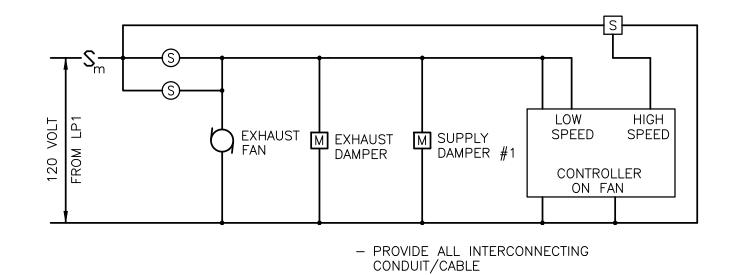
0 4' 8' SCALE: 1/4" = 1'-0'SCALE IN FEET

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL LOW VOLTAGE FLOOR PLAN

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN


TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054


75% DESIGN

PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REV	/ISION -
DESIGNED BY	MC
DRAWN BY	RLB
CHECKED BY	MC
APPROVED BY	/ ABB

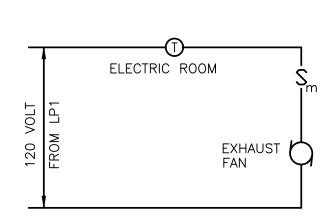
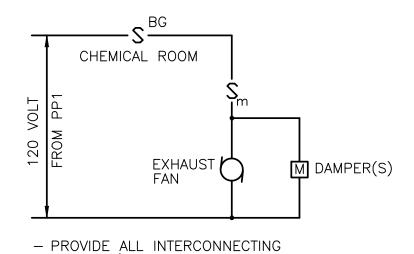
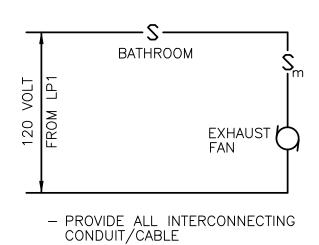

E-301

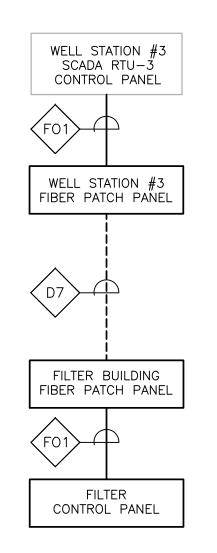
ABB SHEET 44 of 60



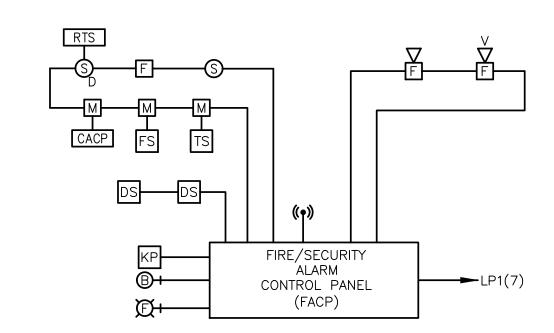
EF-1 EXHAUST FAN WIRING DIAGRAM
NOT TO SCALE


EF-3 EXHAUST FAN WIRING DIAGRAM
NOT TO SCALE

PROVIDE ALL INTERCONNECTING CONDUIT/CABLE

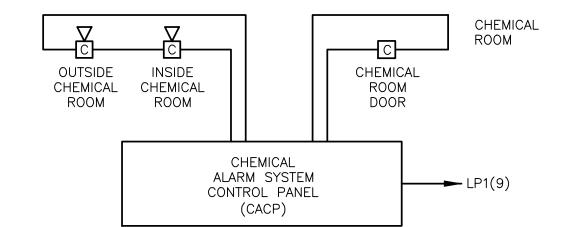


EF-2 EXHAUST FAN WIRING DIAGRAM
NOT TO SCALE


CONDUIT/CABLE

EF-4 EXHAUST FAN WIRING DIAGRAM
NOT TO SCALE

SCADA COMMUNICATION RISER DIAGRAM
NOT TO SCALE



FIRE/SECURITY NOTES:

- 1. RISER DIAGRAM ONLY REPRESENTS TYPE OF DEVICES AND DOES NOT REPRESENT ACTUAL QUANTITIES. REFER TO PLAN DRAWINGS QUANTITIES AND LOCATIONS OF DEVICES.
- 2. MINIMUM SIZE CONDUIT SHALL BE 3/4" UNLESS NOTED OTHERWISE.
- 3. SYSTEM CONDUIT/CABLING SHALL BE INSTALLED IN ACCORDANCE WITH EQUIPMENT SUPPLIERS APPROVED SHOP DRAWINGS AND WIRING DIAGRAMS.
- 4. PROVIDE RED COLORED CIRCUIT BREAKER HANDLE LOCK ON POWER CIRCUIT. HANDLE LOCK SHALL ALLOW THE CIRCUIT BREAKER TO TRIP, BUT PREVENT SWITCHING OF THE CIRCUIT BREAKER TO THE "OFF" POSITION.
- 5. ALL COMPONENTS OF THE SYSTEM SHALL BE MOUNTED IN ACCORDANCE WITH ADA REQUIREMENTS.

FIRE/SECURITY SYSTEM RISER DIAGRAM

NOT TO SCALE

CHEMICAL ALARM RISER DIAGRAM

NOT TO SCALE

CHEMICAL ALARM NOTES:

- 1. RISER DIAGRAM ONLY REPRESENTS TYPE OF DEVICES WITHIN AN AREA AND DOES NOT REPRESENT ACTUAL QUANTITIES. REFER TO PLAN DRAWINGS FOR EXACT QUANTITIES AND LOCATIONS OF DEVICES.
- 2. MINIMUM SIZE CONDUIT SHALL BE 3/4" UNLESS NOTED OTHERWISE.
- 3. SYSTEM CONDUIT/CABLING SHALL BE INSTALLED IN ACCORDANCE WITH EQUIPMENT SUPPLIERS APPROVED SHOP DRAWINGS AND WIRING DIAGRAMS.
- 4. PROVIDE RED COLORED CIRCUIT BREAKER HANDLE LOCK ON POWER CIRCUIT. HANDLE LOCK SHALL ALLOW THE CIRCUIT BREAKER TO TRIP, BUT PREVENT SWITCHING OF THE CIRCUIT BREAKER TO THE "OFF" POSITION.
- ALL COMPONENTS OF THE SYSTEM SHALL BE MOUNTED IN ACCORDANCE WITH ADA REQUIREMENTS.
- 6. THE CHEMICAL ALARM SYSTEM SHALL BE UL LISTED 4-ZONE CONVENTIONAL TYPE FIRE ALARM SYSTEM.

Signed By: ----

REV	DESCRIPTION	DSN	CHK	DATE
\L \	DESCRIPTION	DWN	APP	DATE

12345

SCALE VE	RIFICATION
	INCH IN LENGTI IAL DRAWING
0	1"
SHEET AD	I INCH ON THIS DJUST YOUR CCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL DIAGRAMS II

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION
900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REV	'ISION -
DESIGNED BY	МС
DRAWN BY	RLB
CHECKED BY	МС
APPROVED BY	ABB

E-401

SHEET 46 of 60

			PAI	NELB	OAF	RD :	SCH	EDUL	E				
NO. <u>LP1</u>										LC	CATI	ON:011 ELECTRIC ROOM	
						100%	SOLID	NEUTRAL;		_	- <i>f</i>	A MCB	
AIC AT V FULL GROUND	BUS						_	·		·		A MLO _SURFACE_MOUNTING	
DESCRIPTION OF LOAD	LOA	AD (I	KVA)	BREAK	ER		В	REAKER	LO	AD (k	(VA)	DESCRIPTION OF LOAD	H
DESORTI HOLV OF EGAB	Aø	Вø	Cø	TRIP	POLE		POLE	TRIP	Αø	Вø	Сø	DESCRIPTION OF LOVE	
INTERIOR LIGHTING	0.94	4		20A	1	1++-	- 1	20A	1.0			FILTER ROOM RECEPTACLES	
EXTERIOR LIGHTING		0.10		20A	1]++-	- 1	20A		0.80		FILTER ROOM RECEPTACLES	
EMERGENCY SHOWER			0.15	20A	1]++-	1	20A			0.80	EXTERIOR RECEPTACLES	
FIRE ALARM CONTROL PANEL FACP	0.50)		20A	1]┿┼┼	- 1	20A	0.40			ELECTRIC ROOM RECEPTACLES	
CHEMICAL ALARM CONTROL PANEL CACP		0.50		20A	1]++-	- 1	20A		0.77	1	EXHAUST FAN EF-1	
GAS UNIT HEATER GUH-1			1.10	20A	1	1+++	1	20A			0.20	EXHAUST FAN EF-2	T
GAS UNIT HEATER GUH-2	1.10			20A	1] ♦ 	- 1	20A	0.7	7		EXHAUST FAN EF-3	T
ELECTRIC WALL HEATER EWH-1		1.50		20A	1	1++ -	- 1	20A		0.10		EXHAUST FAN EF-4	T
7 CFP-601, CFP-611, CFP-621			0.75	20A	1	1+++	1	20A			0.72	GAC UNIT 101 VALVES	Ŧ.
CFP-602, CFP-612, CFP-622	0.75	5		20A	1	1 ♦+	- 1	20A	0.7	2		GAC UNIT 111 VALVES	7
1 CHEMICAL FILL STATIONS		0.20		20A	1]┼┿┤	- 1	20A		0.72	2	GAC UNIT 201 VALVES	2
FLOW METERS			1.00	20A	1]+++	1	20A			0.72	GAC UNIT 211 VALVES	7
GAS WATER HEATER TWH-1	0.50	0		20A	1] ♦ +}-	- 1	20A	0.12	2		ABV-501	
RECIRC. PUMP RP-1		0.10		20A	1	1++-	- 1	_		T -		_	7
9 _				_	1	1++4	1	=			<u> </u>	_	Ţ
1 –	-			_	1	1 ♦+	- 1	=				_	Ţ
3 –		1-		_	1	┨┼┿┤	- 1	_		T -		_	13
5 –				_	1	1++4	1	_			_	_	1
7 –	_			_	1	1 ♦+	- 1	_	_			_	1
9 _		_		_	1	1++-	- 1	20A		0.50		GENERATOR BATTERY CHARGER & STATOR HEAT.	. 4
1 –			-	_	1]++-	1	20A			1.50	GENERATOR BLOCK HEATER	7
UB-TOTAL CONNECTED		_			Ī]			_	_	_	SUB-TOTAL CONNECTED	
* PROVIDE GFCI BREAKER					SUB-T	OTAL	 CONNEC	TED KV	'A Aø	= -			—
					SUB-T	OTAL	CONNEC	TED KV	'A Bø	= -			
					SUB-T	OTAL	CONNEC	TED KV	'A Cø	= -			
					TOTAL	CONN	ECTED	KV	′A =	_			

	LIGHTING FIXTURE SCHEDULE									
TYPE	DESCRIPTION	MANUFACTURER &	LAMPS		VOLTS	WATTS		NTING	REMARKS	
		CATALOG SERIES	TYPE	LUMENS			TYPE	HEIGHT		
F1	48" LED ENCLOSED AND GASKETED INDUSTRIAL LIGHTING FIXTURE.	LITHONIA FEM-L48-6000LM-IMAFL- MVOLT-35K-80CRI	LED 3500K	6000lm	120	45	PENDANT	20'-0"ABOVE FINISHED FLOOR UNLESS OTHERWISE NOTED		
F2	48" LED ENCLOSED AND GASKETED INDUSTRIAL LIGHTING FIXTURE.	LITHONIA FEM-L48-4000LM-IMAFL- MVOLT-35K-80CRI	LED 3500K	4000lm	120	31	SURFACE			
W1	EXTERIOR BUILDING MOUNTED LED WALL PACK LIGHT FIXTURE	LITHONIA TWP-LED-20C-700-50K- T3M-120-PE-DDXB	LED 5000K	4200lm	120	45	WALL	APPROXIMIATELY 9'-0" AFF	INTEGRAL PHOTOCELLL CONTROLLED	
	SELF CONTAINED EMERGENCY LIGHTING BATTERY UNIT NEMA 4 WITH TWO LIGHTING HEADS	REFER TO SPECIFICATIONS			120	8W	WALL	APPROXIMIATELY 8'-6" AFF	INSTALL 3/4"C, 2#12, 1#12GND TO REMOTE HEADS	
	SEALED-BEAM WEATHERPROOF REMOTE LIGHTING FIXTURE WITH TWO LIGHTING HEADS	REFER TO SPECIFICATIONS			120	8W	WALL	APPROXIMIATELY 8'-6" AFF		
	EMERGENCY EXIT SIGN LED TYPE WITH BATTERY BACK-UP NEMA 4X	REFER TO SPECIFICATIONS			120		WALL	APPROXIMIATELY 8'-6" AFF		

LIGHTING FIXTURE SCHEDULES NOTES:

THE CATALOG NUMBERS LISTED ARE GIVEN AS A GUIDE TO THE DESIGN AND QUALITY OF FIXTURE DESIRED. EQUIVALENT DESIGNS, MATERIALS, DIMENSIONS, COEFFICIENT OF UTILIZATIONS AND EQUAL QUALITY FIXTURES OF OTHER MANUFACTURERS WILL BE ACCEPTABLE.

	POWER CAI	BLE/CONDUIT SCH	HEDULE
SYMBOL	CONDUIT SIZE	CONDUCTORS*	GND*
P22	3/4"	(2)#12	(1)#12
P24	3/4"	(4)#12	(1)#12
P26	3/4"	(6)#12	(1)#12
P32	3/4"	(2)#10	(1)#10
P33	3/4"	(3)#10	(1)#10
P53	3/4"	(3)#8	(1)#10
P54	3/4"	(4)#8	(1)#10
P63	1"	(3)#6	(1)#8
P64	1"	(4)#6	(1)#8
P83	1 1/4"	(3)#4	(1)#8
P84	1 1/4"	(4)#4	(1)#8
P103	1 1/2"	(3)#3	(1)#6
P104	1 1/2"	(4)#3	(1)#6
P113	1 1/2"	(3)#2	(1)#6
P114	1 1/2"	(4)#2	(1)#6
P133	2"	(3)#1	(1)#6
P134	2"	(4)#1	(1)#6
P153	2"	(3)#1/0	(1)#6
P154	2"	(4)#1/0	(1)#6
P173	2 1/2"	(3)#2/0	(1)#6
P174	2 1/2"	(4)#2/0	(1)#6
P203	2 1/2"	(3)#3/0	(1)#4
P204	2 1/2"	(4)#3/0	(1)#4
P233	3"	(3)#4/0	(1)#4
P234	3"	(4)#4/0	(1)#4
P253	3"	(3)250KCMIL	(1)#4
P254	3"	(4)250KCMIL	(1)#4
P304	3"	(4)350KCMIL	(1)#4

TELE/DATA CABLE/CONDUIT SCHEDULE									
SYMBOL	CONDUIT SIZE	CABLES							
TD1	1"	1-CAT6							
F01	1"	6-STRAND FIBER OPTIC CABLE							

	SIGNAL CABLE/CONDUI	T SCHEDULE
SYMBOL	CONDUIT SIZE	CONDUCTORS
S	1"	VENDER PROVIDED
S1	3/4"	1-2/C#16 TSP
S13	3/4"	1-3/C#16 TSP
S2	3/4"	2-2/C#16 TSP
S23	3/4"	2-3/C#16 TSP
S3	1"	3-2/C#16 TSP
S33	1"	3-3/C#16 TSP
S4	1"	4-2/C#16 TSP
S5	1"	5-2/C#16 TSP
S6	1 1/2"	6-2/C#16 TSP
S7	1 1/2"	7-2/C#16 TSP
S8	1 1/2"	8-2/C#16 TSP
S9	1 1/2"	9-2/C#16 TSP
S10	2"	10-2/C#16 TSP
TC1	3/4"	8/C#18

CONTROL CABLE/CONDUIT SCHEDULE				
SYMBOL	CONDUIT SIZE	CONDUCTORS		
C2	3/4"	2#14		
C4	3/4"	4#14		
C5	3/4"	5#14		
C6	3/4"	6#14		
C7	3/4"	7#14		
C8	3/4"	8#14		
C9	3/4"	9#14		
C10	3/4"	10#14		
C12	3/4"	12#14		
C16	1"	16#14		
C20	1"	20#14		
C30	1"	30#14		
C60	2"	60#14		
C64	2"	64#14		
C100	2 1/2"	100#14		

NOTE: CONDUIT AND CONDUCTOR SIZES ARE TO BE PER THE ABOVE SCHEDULES UNLESS OTHERWISE NOTED.

	signed By:	# 12345		
REV	DESCRIPTION	DSN	СНК	DATI
KEV	DESCRIPTION	DWN	APP	DATI

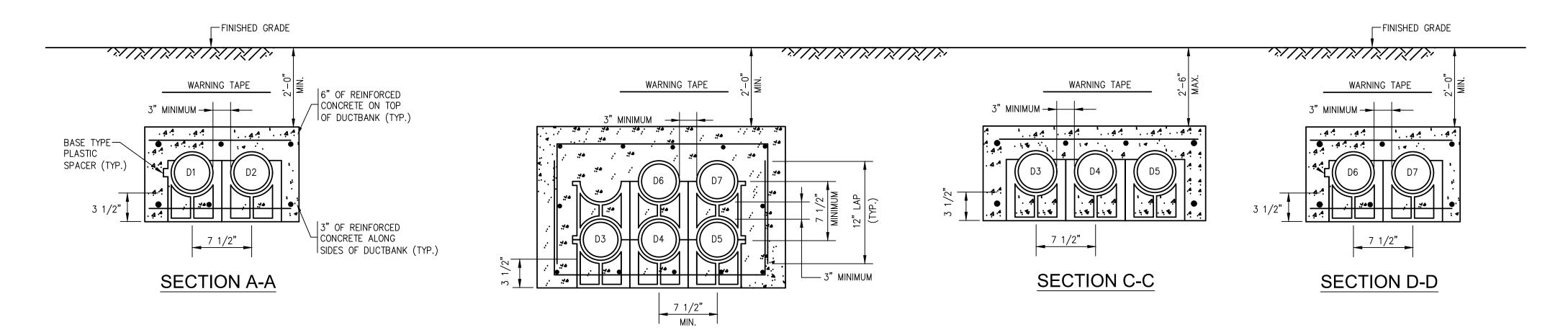
0 1"
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

SCALE VERIFICATION

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL SCHEDULES

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

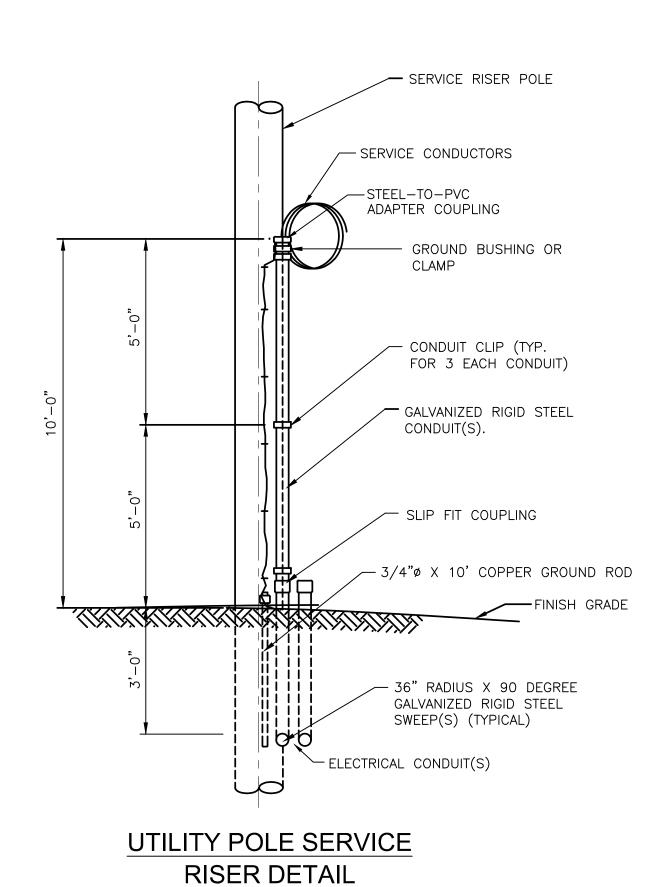

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO. 20233667.002A ISSUE DATE SEPT. 2023 CURRENT REVISION DESIGNED BY DRAWN BY CHECKED BY APPROVED BY

E-402

DUCT / CABLE SCHEDULE				
DUCT NO.	SIZE	CONDUCTORS	FROM	ТО
D1	3"	(4) 350KCMIL	UTILITY POLE	MCB
D2	3"	PULL STRING	UTILITY POLE	STUB UP BELOW MCB
D3	3"	(4) 350KCMIL, #4 GND	GENERATOR	GENERATOR DISCONNECT SWITCH
D4	1"	(4) #12, #12GND	LP3 PANELBOARD	GENERATOR AUXILLARY SYSTEMS
D5	1"	(12) #14	GENERATOR	ATS, EMERGENCY STOP, SCADA RTU PANEL
D6	2"	(4) #4/0, #6 GND	MDP	WELL STATION #3 DP1
D7	3"	12 STRAND FIBER OPTIC CABLE	FILTER BUILIDING FIBER OPTIC PATCH PANEL	WELL STATION #3 FIBER OPTIC PATCH PANEL



SECTION B-B

NOTES

- 1. BACKFILL DUCT BANK IN LAYERS AND MANUALLY TAMP OR "PUDDLE" CONCRETE FILL. PROVIDE RED DUCT BANK MARKER TAPES, READING "CAUTION ELECTRICAL LINES BELOW", OVER ENTIRE LENGTH OF DUCTLINE. LOCATE TAPES 12 INCHES BELOW GRADE. PROVIDE A TAPE FOR EVERY 12 INCHES OF WIDTH OF DUCTLINE.
- 2. A MINIMUM OF 12" SEPARATION SHALL BE KEPT BETWEEN DUCT BANK SECTIONS WITHIN SAME TRENCH.
- 3. REINFORCING STEEL SHALL BE #5 REBAR WITH CROSS SECTION SPACED EVERY 24". CONCRETE TO BE RATED FOR 3000 PSI AFTER 28 DAYS.

DUCTBANK SECTIONS NO SCALE

NOT TO SCALE

TRENCH WIDTH

MATCH GRADE

GRADE

MARKER TAPE

WELL COMPACTED FILL
FREE OF LARGE STONES

2" MIN. TAMPED SAND
ABOVE AND BELOW
CONDUIT

NOTES:

- 1. BACKFILL IN LAYERS AND MANUALLY TAMP. PROVIDE RED DUCT BANK MARKER TAPE, READING "CAUTION ELECTRICAL LINES BELOW", OVER ENTIRE LENGTH OF DUCTLINE. LOCATE TAPE 12 INCHES BELOW GRADE. PROVIDE A TAPE FOR EVERY 12 INCHES OF WIDTH OF DUCTLINE.
- TRENCHING AND BACKFILLING SHALL BE PERFORMED UNDER DIVISION 2 OF THIS CONTRACT.

SINGLE UNDERGROUND CONDUIT SECTION

NOT TO SCALE

Signe	d By:	# 12345		
REV	DESCRIPTION	DSN	CHK	DA ⁻
IXL V	DESCRIPTION	DWN	APP	
			l l	

SCALE VERIFICATION
THIS BAR IS 1 INCH IN LENGTH

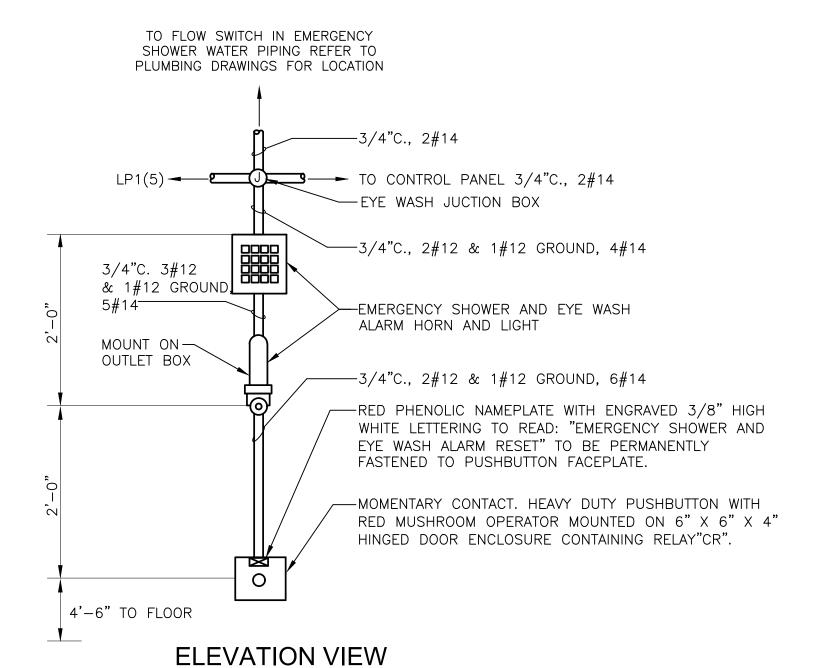
ON ORIGINAL DRAWING

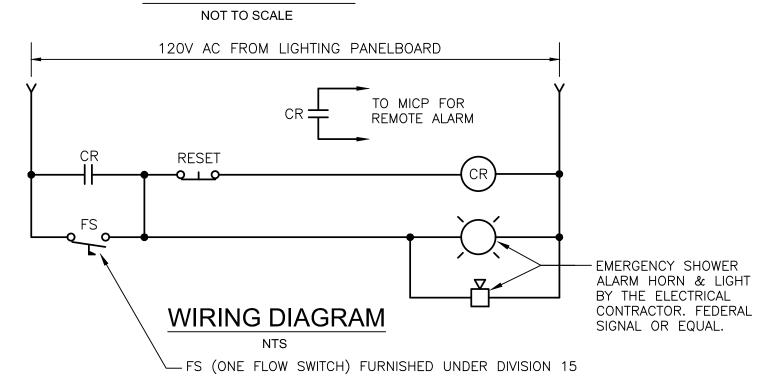
IF IT'S NOT 1 INCH ON THIS
SHEET ADJUST YOUR
SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL SITE DETAILS

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 PFAS WTP FINAL DESIGN

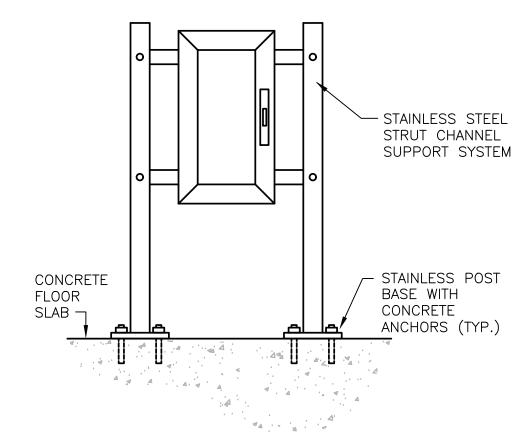

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION
900 MAIN ST, MILLIS, MA 02054


75% DESIGN

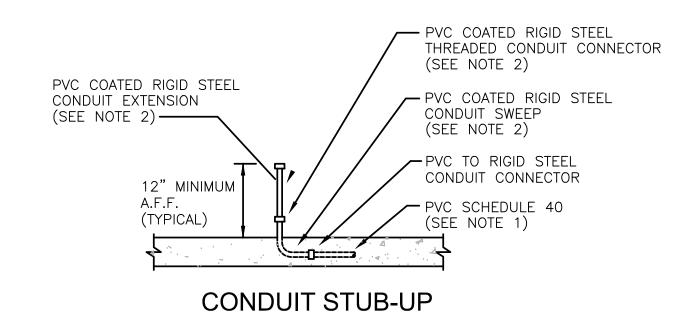
PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REV	ISION -
DESIGNED BY	MC
DRAWN BY	RLB
CHECKED BY	MC
APPROVED BY	ABB

E-403

SHEET 48 of 60



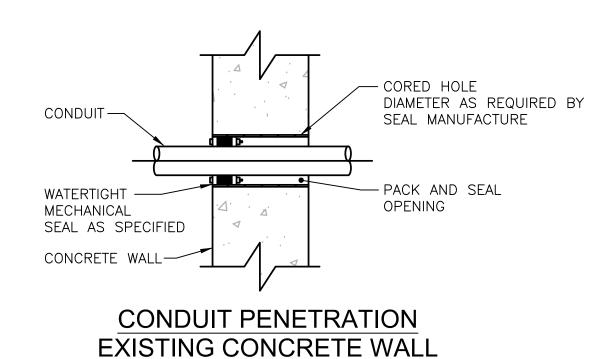
NOTE: 1. ALL EXPOSED SURFACES OF COMPONENTS SHALL HAVE A YELLOW ENAMEL FINISH, INCLUDING CONDUIT (WITHIN 10'-0" RADIUS OF THE STATION, BOXES, ENCLOSURE AND HORN GRILLE.


2. ALARM STATION TO BE MOUNTED OUTSIDE OF EACH CHEMICAL ROOM CONTAINING A EMERGENCY SHOWER. REFER TO PLAN DRAWINGS FOR EYEWASH JUNCTION BOX LOCATIONS.

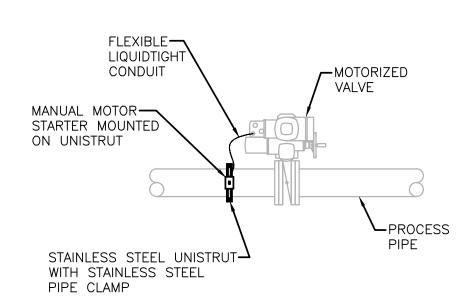
EMERGENCY EYE WASH
ALARM STATION
NOT TO SCALE

ELECTRICAL EQUIPMENT STANCHION MOUNTING DETAIL

NOT TO SCALE

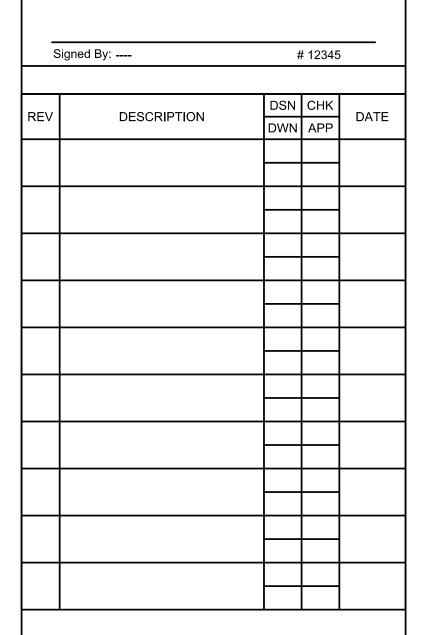


NOTES:


1. ALL CONDUIT INSTALLED IN SLAB SHALL BE PVC SCHEDULE 40 EXCEPT ALL SIGNALS CONDUITS AND VFD MOTOR FEEDERS SHALL BE RIGID STEEL.

NOT TO SCALE

2. ALL PVC COATED RIGID STEEL CONDUIT WHICH HAS BEEN FIELD CUT OR DAMAGED SHALL BE SPRAYED OR PAINTED WITH A PVC COATING ACCEPTABLE FOR USE TO REPAIR OR SEAL PVC COATED RIGID STEEL CONDUIT. ONLY MANUFACTURER APPROVED PVC COATING SEALANT SHALL BE ACCEPTABLE.


NOT TO SCALE

MOTORIZED VALVE MANUAL MOTOR STARTER MOUNTING

NOT TO SCALE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

0 1"

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR

SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

ELECTRICAL DETAILS

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO. 2	0233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REVIS	SION -
DESIGNED BY	MC
DRAWN BY	RLB
CHECKED BY	MC
APPROVED BY	ABB

E-404

SHEET 49 of 60

FIRE PROTECTION NOTES

- 1. THE WORK COVERED CONSISTS OF FURNISHING ALL LABOR AND MATERIALS NECESSARY TO INSTALL, COMPLETE AND READY FOR CONTINUOUS OPERATION, THE FIRE PROTECTION SYSTEMS, APPARATUS AND EQUIPMENT FOR THIS PROJECT.
- 2. ALL EQUIPMENT AND MATERIALS FURNISHED UNDER THE FIRE PROTECTION FSB, LABOR AND TESTING PERFORMED HEREIN SHALL BE IN COMPLETE ACCORDANCE WITH THE STATE BUILDING CODE, ALL LOCAL CODES AND REGULATIONS, NATIONAL FIRE PROTECTION ASSOCIATION, INSURANCE REGULATIONS AND REQUIREMENTS GOVERNING SUCH WORK.
- 3. ANY AND ALL PERMITS REQUIRED FOR INSTALLATION OF ANY MATERIAL SHALL BE OBTAINED AS PART OF THE WORK OF THE SPECIFICATION, INCLUDING ALL FEES OR EXPENSES INCURRED.
- 4. IT IS THE INTENT OF THESE DOCUMENTS THAT THE ENTIRE BUILDING BE 100% SPRINKLED, INCLUDING ELECTRIC ROOMS.
- 5. PROVIDE A COMPLETE HYDRAULICALLY CALCULATED SPRINKLER SYSTEM THROUGHOUT THE BUILDING. ALL WORK SHALL BE IN STRICT CONFORMANCE WITH NFPA 13 (2013) AND INCLUDING ALL RULES AND REGULATIONS OF THE LOCAL FIRE DEPARTMENT.
- 6. SPRINKLERS, PIPING AND THEIR LAYOUT SHOWN ON THE DRAWINGS ARE SCHEMATIC AND ARE SHOWN ON THE DRAWINGS ONLY AS A GUIDE AND AID TO THE CONTRACTOR IN PREPARATION OF THE FABRICATION DRAWINGS. THE SPRINKLERS, PIPING AND THEIR LAYOUT ARE NOT INTENDED TO SHOW EVERY OFFSET AND FITTING. ADDITIONAL OFFSETS AND FITTINGS WILL BE REQUIRED TO BE INSTALLED WHEN COORDINATING WITH ALL TRADES TO AVOID WHERE CONFLICTS MAY OCCUR THAT MAY NOT BE INDICATED ON THE DRAWINGS, SUCH AS, BUT NOT LIMITED TO: BEAMS, COLUMNS, DUCTWORK, LIGHTING, OR PIPING. MODIFICATION TO THE SPRINKLER SPACING WILL BE ALLOWED AT NO COST TO THE PROJECT SUBJECT TO ARCHITECT'S/ENGINEER'S APPROVAL AND CONTINUED COMPLIANCE WITH NFPA 13 (2013).
- 7. THE FIRE PROTECTION CONTRACTOR SHALL PREPARE WORKING DRAWINGS OF THE SPRINKLER WORK AND OBTAIN APPROVALS FROM THE LOCAL FIRE DEPARTMENT PRIOR TO INSTALLATION.
- 8. ROUTING OF SPRINKLER MAINS, BRANCHES AND SPRINKLERS SHALL BE THOROUGHLY COORDINATED WITH OTHER TRADES AND THE BUILDING STRUCTURE PRIOR TO SUBMISSION OF COORDINATED SHOP DRAWINGS.
- 9. SPRINKLERS IN AREAS WITH NO FINISHED CEILING SHALL BE UPRIGHT TYPE, LOCATED AS HIGH AS POSSIBLE, SPRINKLERS SUBJECT TO POTENTIAL PHYSICAL DAMAGE SHALL BE INSTALLED WITH LISTED PROTECTIVE CAGES.
- 10. SPRINKLERS INSTALLED BELOW SLOPED CEILINGS OR ROOFS, SHALL BE INSTALLED IN STRICT ACCORDANCE TO NFPA 13 (2013) AND SPRINKLER MANUFACTURER'S INSTALLATION LISTING.
- 11. SPRINKLERS IN AREAS WITH FINISHED CEILING SHALL BE CONCEALED TYPE WITH FACTORY PAINTED COVER PLATES. COVER PLATE COLORS SHALL BE COORDINATED WITH ENGINEER FOR FINAL APPROVAL OF THE COLOR SELECTION.
- 12. SPRINKLERS SHALL BE LOCATED ABOVE AND BELOW ALL DUCTWORK GREATER THAN 4'-0" IN WIDTH.
- 13. MISCELLANEOUS DISCREPANCIES OR OMISSIONS WHICH MIGHT APPEAR ON THE DRAWINGS OR IN THE SPECIFICATIONS WILL NOT RELIEVE THE FIRE PROTECTION SUB—CONTRACTOR OF CODE COMPLIANCE.
- 14. SPRINKLER PIPING SHALL NOT BE INSTALLED TO PASS OVER ELECTRIC PANELS. PROVIDE SHEET METAL PROTECTIVE SHIELDS OVER ELECTRIC PANELS.
- 15. BACKFLOW PREVENTION DEVICES SHALL BE PROVIDED WITH A HOSE VALVE TEST HEADER ASSEMBLY PIPED TO EXTERIOR OR OTHER ACCEPTED MEANS THAT ALLOWS FOR FULL FLOW TESTING OF SYSTEM DEMAND IN ACCORDANCE WITH NFPA 13 (2013).
- 16. REFER TO DESIGN CRITERIA FOR SPRINKLER DENSITY AND AREA OF APPLICATION.
- 17. REFER TO ARCHITECTURAL SECTIONS AND ELEVATIONS FOR EXACT LOCATION OF EXTERIOR PENETRATIONS.

FIRE PROTECTION DESIGN CRITERIA

1. FIRE SUPPRESSION CRITERIA

- A. THE FIRE PROTECTION FSB SHALL MAKE PROVISIONS FOR OBTAINING UPDATED HYDRANT FLOW TEST INFORMATION FOR THIS PROJECT. ANY FLOW TEST INFORMATION NOTED IN THE CONTRACT DOCUMENTS ARE CONSIDERED PRELIMINARY. A NEW FLOW TEST SHALL BE REQUIRED AT THIS CONTRACTOR'S EXPENSE.
- B. THE FOLLOWING SPRINKLER DESIGN DENSITIES SHALL BE USED FOR SPRINKLER SYSTEM PIPE SIZING:

ORDINARY HAZARD OCCUPANCIES GROUP 1

DESIGNED FOR 0.15 GPM OVER THE MOST REMOTE 1500 SQUARE FEET. MAXIMUM SPACING OF 130 SQUARE FEET PER SPRINKLER, UNLESS NOTED OTHERWISE. INCLUDE 250 GPM FOR INSIDE HOSE STREAM ALLOWANCE AS PART OF THE CALCULATION. MAXIMUM VELOCITIES SHALL NOT EXCEED 20 FEET PER SECOND.

- C. FIRE PROTECTION SIGNALING SYSTEMS CONTROL EQUIPMENT AND ANNUNCIATOR PANEL ARE SHOWN ON THE ELECTRICAL DRAWINGS.
- D. THE SPRINKLER LAYOUT SHOWN ON THESE DRAWINGS SHALL BE HYDRAULICALLY CALCULATED. THE RESULTS OF THE HYDRAULIC CALCULATION SHALL SHOW THAT THERE IS SUFFICIENT PRESSURE TO OPERATE THE REQUIRED NUMBER OF SPRINKLERS AT THE MOST REMOTE DESIGN AREAS. PIPE SIZES AND NODE LOCATIONS HAVE BEEN SHOWN ON THE DRAWINGS TO INDICATE DESIGN INTENT.
- E. THE SPRINKLER CONTRACTOR SHALL FOLLOW THE DESIGN CRITERIA INDICATED ON THE DRAWINGS, BUT WILL BE ALLOWED TO VARY THE PIPE SIZES TO ALLOW FOR COORDINATION AND MINOR CHANGES IN THE PREPARATION.

2. <u>SEQUENCE OF OPERATION</u>

A. WET SPRINKLER SYSTEM: THE WET PIPE SYSTEM EMPLOYS AUTOMATIC (CLOSED FUSIBLE LINK) SPRINKLERS ATTACHED TO PIPING CONTAINING WATER UNDER PRESSURE AT ALL TIMES. WHEN A FIRE OCCURS, INDIVIDUAL SPRINKLERS ARE ACTIVATED BY HEAT AND WATER FLOWS IMMEDIATELY. THE FLOW OF WATER RAISES THE ALARM CHECK VALVE CLAPPER FROM ITS SEAT, THIS ALLOWS WATER TO ENTER THE ALARM LINE. THE FLOW SWITCH ON THE ALARM LINE ACTIVATES A LOCAL AUDIBLE ALARM PROVIDING AN ELECTRIC SIGNAL, WHICH IS SENT TO THE FIRE ALARM CONTROL PANEL, THIS SIGNAL IS FORWARDED TO THE LOCAL FIRE DEPARTMENT. A FIRE DEPARTMENT CONNECTION IS CONNECTED TO THE SUPPLY SIDE OF THE SYSTEM FOR USE BY THE LOCAL FIRE DEPARTMENT PUMPER TRUCK.

3. TESTING CRITERIA FOR FINAL ACCEPTANCE

- A. APPROVAL OF SPRINKLER SYSTEM: THE INSTALLING SPRINKLER CONTRACTOR
- a. NOTIFY THE AUTHORITY HAVING JURISDICTION AND OWNER'S REPRESENTATIVE OF THE TIME AND DATE TESTING WILL BE PERFORMED.
- b. PERFORM ALL REQUIRED ACCEPTANCE REQUIREMENTS LISTED IN NFPA 13 (2013) HYDROSTATIC TESTS.
- c. COMPLETE AND SIGN THE APPROPRIATE CONTRACTOR'S MATERIAL AND TEST CERTIFICATES.
- B. COMPLETE AS-BUILT DRAWINGS AS SPECIFIED.

FIRE PROTECTION LEGEND

SYMBOL	<u>ABBREVIATION</u>	DESCRIPTION
		ABOVE FLOOR PIPING (INDICATED AS SINGLE LINEWORK)
		BELOW FLOOR PIPING (INDICATED AS DOUBLE LINEWORK)
		NEW WORK (INDICATED AS HEAVY LINEWORK)
—— F ——	F	FIRE PROTECTION SERVICE MAIN
——— WS ———	WS	WET SPRINKLER SYSTEM
 o	UP	UP (PENETRATES LEVEL ABOVE)
 >		RISE (BUT DOES NOT PENETRATE LEVEL ABOVE)
 >	DN	DOWN (PENETRATES LEVEL BELOW)
 >		DROP (BUT DOES NOT PNETRATE LEVEL BELOW)
		DIRECTION OF FLOW
SST		SHUTOFF VALVE (OUTSIDE SCREW AND YOKE WITH SUPERVISORY SWITCH)
	FDC	FIRE DEPARTMENT CONNECTION
	CV	CHECK VALVE
→4 11	DV	DRAIN VALVE WITH HOSE THREADS
	TS	TAMPER SWITCH
	FS	FLOW SWITCH
	PS	PRESSURE SWITCH
9	PG	PRESSURE GAUGE
	NIFPC	NOT IN FIRE PROTECTION CONTRACT
	FPC	FIRE PROTECTION CONTRACTOR
— ≫	VIV	VALVE IN VERTICAL
	RPBP	REDUCED PRESSURE BACKFLOW PREVENTER
	WACV	WET ALARM CHECK VALVE
₫		ISOLATION VALVE W/ TAMPER SWITCH
	CONCEALED	CONCEALED SPRINKLER
•	PENDENT	PENDENT SPRINKLER
©	UPRIGHT	UPRIGHT SPRINKLER
O _G	UPRIGHT	UPRIGHT SPRINKLER W/ PROTECTIVE GUARD
××		HYDRAULIC CALCULATION NODES

5	signed By:	#	‡ 12345	
REV	DESCRIPTION	DSN		DATE
1\L\	BEOORII HON	DWN	APP	DAIL

SCALE VERIFICATIO
THIS BAR IS 1 INCH IN LENG [*] ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

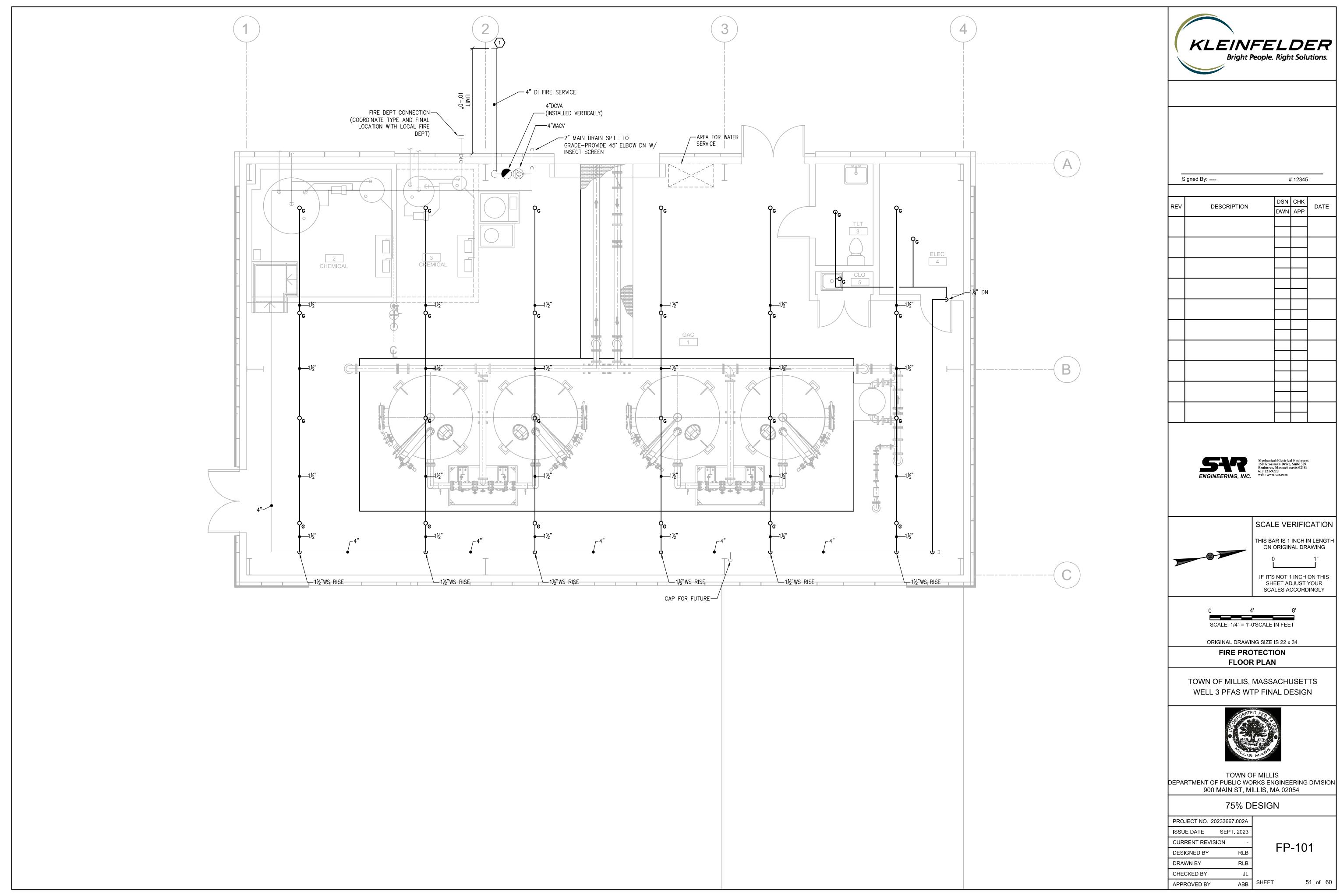
ORIGINAL DRAWING SIZE IS 22 x 34

PLUMBING

LEGEND AND GENERAL NOTES

TOWN OF MILLIS, MASSACHUSETTS
WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION
900 MAIN ST. MILLIS. MA 02054


75% DESIGN

PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT RE\	/ISION -
DESIGNED BY	RLB
DRAWN BY	RLB
CHECKED BY	JL
	•

APPROVED BY

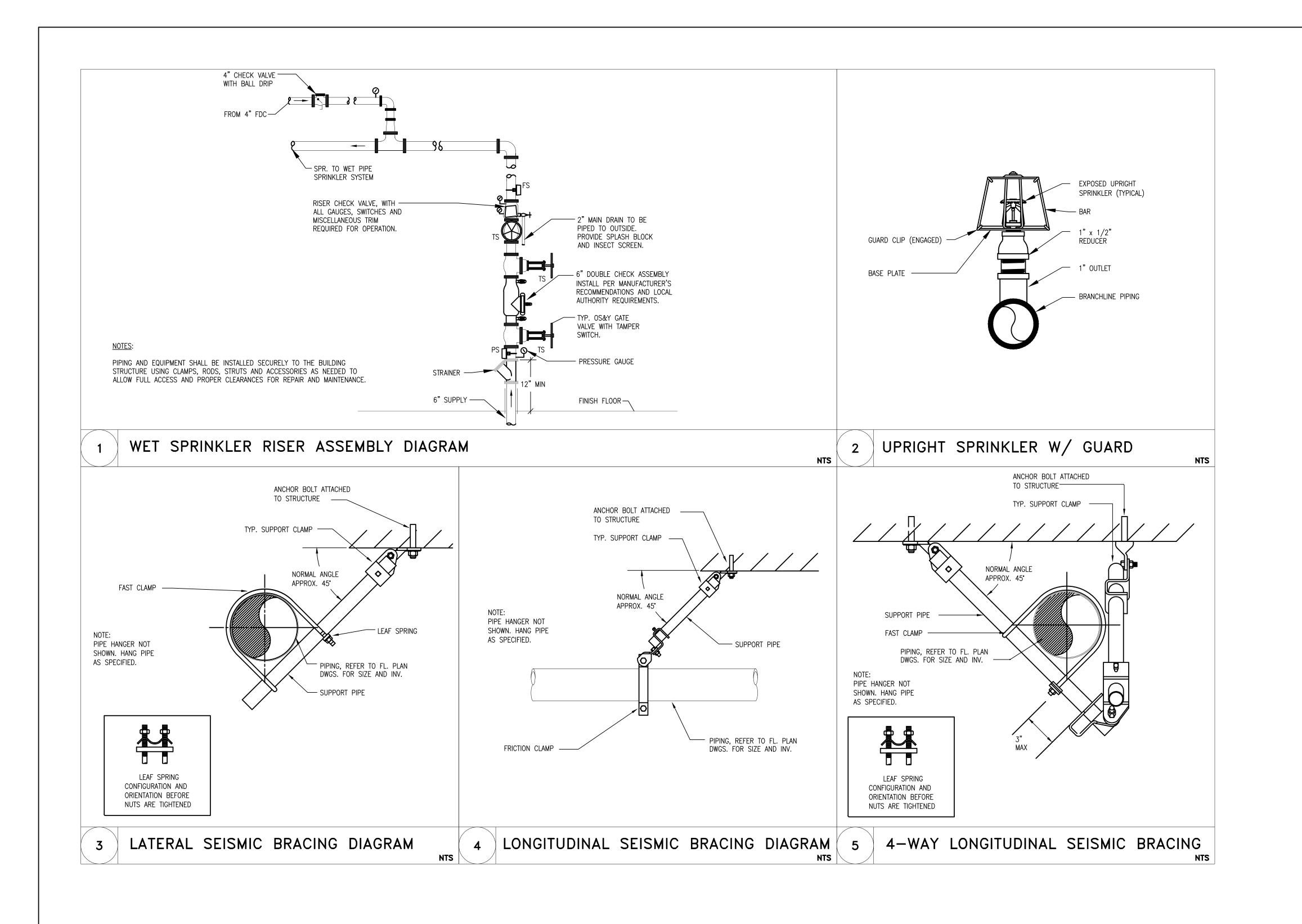

FP-001

ABB SHEET 50 o

REV	DESCRIPTION	DSN	CHK	DATE
INLV	DESCRIPTION	DWN	APP	DATE

Signed By: ----# 12345

REV	DESCRIPTION	DSN	CHK	DATI
KLV	DESCRIPTION	DWN	APP	DATI

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

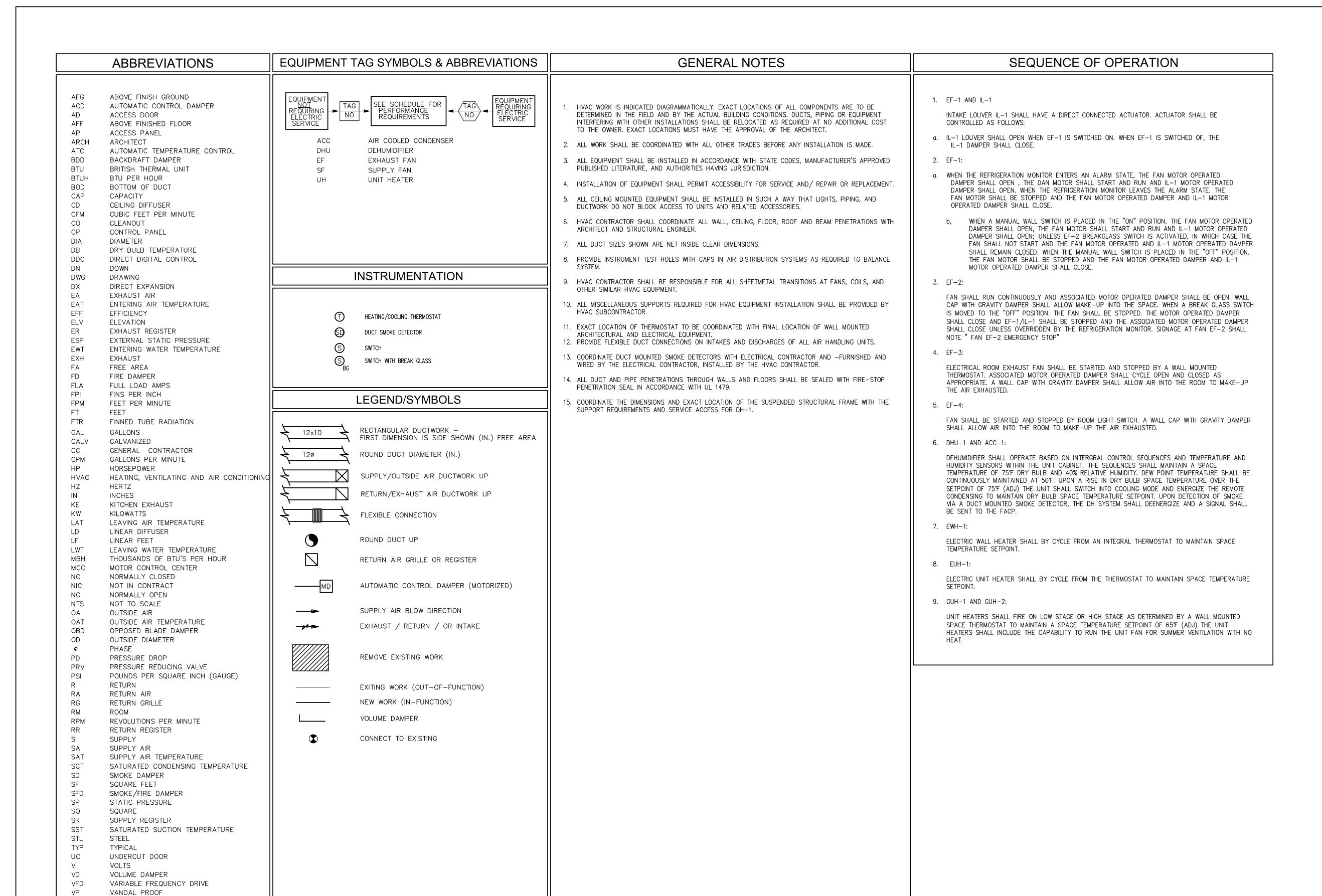
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

FIRE PROTECTION **DETAILS**

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054


75% DESIGN

PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT REV	'ISION -
DESIGNED BY	RLB
DRAWN BY	RLB
CHECKED BY	JL

APPROVED BY

FP-200

ABB SHEET

W/

W/O

WB

WG

WMS

WITH

WITHOUT

WATER GAUGE

WIRE MESH SCREEN

WET BULB TEMPERATURE

12345

DSN CHK

DWN APP

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH

ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS

SHEET ADJUST YOUR SCALES ACCORDINGLY

_	
S	Signed By:
REV	DESCRIPTION
	ENGINEERING, INC

ORIGINAL DRAWING SIZE IS 22 x 34

HVAC

LEGEND AND GENERAL NOTES

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

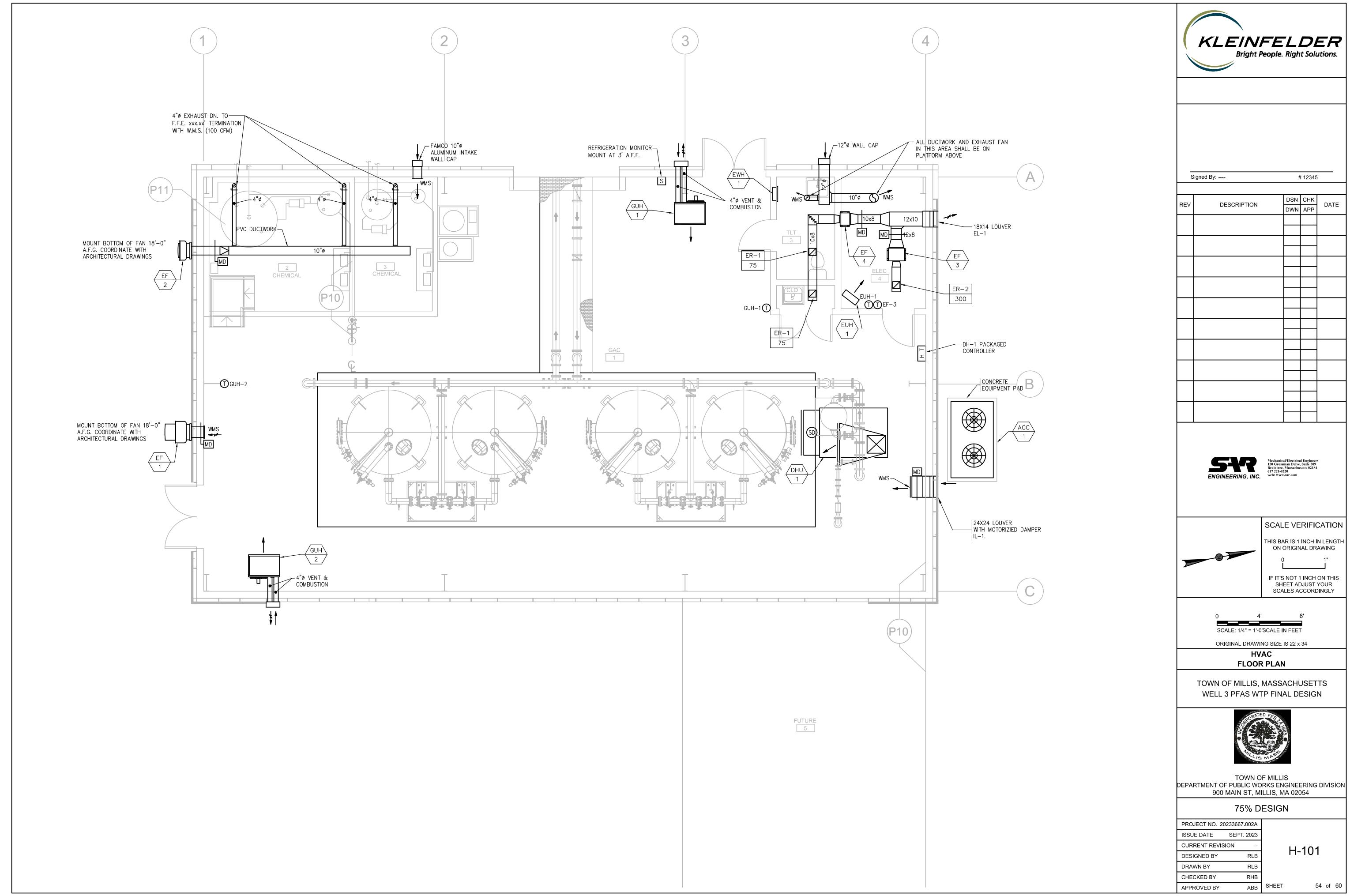
TOWN OF MILLIS
DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION
900 MAIN ST. MILLIS. MA 02054

75% DESIGN

PROJECT NO. 20233667.002A

ISSUE DATE SEPT. 2023

CURRENT REVISION
DESIGNED BY RLB


DRAWN BY RLB

CHECKED BY RHB

APPROVED BY ABB SHEET

H-001

FT

	DEHUMIDIFIER SCHEDULE											
TAG NO.	MANUFACTURER MODEL NO. OR EQUAL	AREA SERVED	TYPE	MOISTURE REMOVAL (LBS/HR)	SENSIBLE COOLING (MBH)	TOTAL COOLING (MBH)	AIRFLOW (CFM)	MCA	ELECT MAX FUSE	VOLT	DATA PHASE	REMARKS
DHU-1	DESERT AIRE LW-10	FILTER ROOM	CEILING	18.6	80.10	100	6,900	26	40	480	3	①

1 PROVIDE HUMIDITY AND TEMPERATURE CONTROLLER TYPICAL TO DESERT AIRE MODEL CA2500 AND R-407C REFRIGERANT.

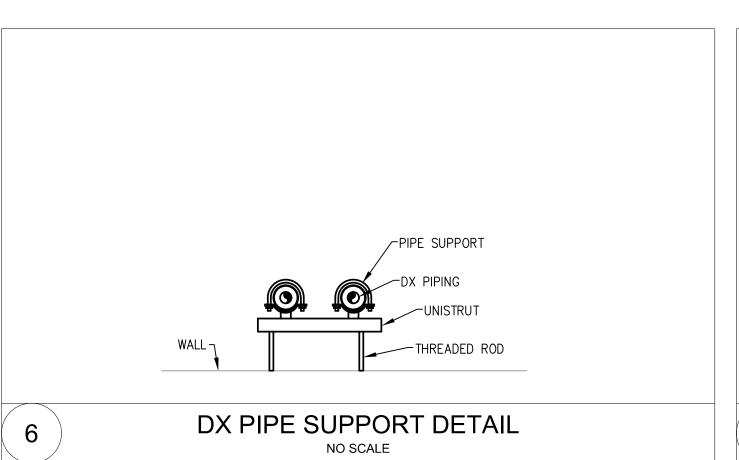
UH	UNIT HEATER SCHEDULE													
TAG NO.	LOCATION	CFM	HP	AIR THROW (FT)	EAT (°F)	LAT (°F)	MOUNT HEIGHT (FT.)	`	OUTPUT (MBH)	ELECT V	RICAL PH	DATA HZ	MANUFACTURER MODEL NUMBER	REMARKS
GUH-1	FILTER ROOM	1,090	1/3	40	50	110	_	75	61.5	120	1	60	MODINE HDC-75	023
GUH-2	FILTER ROOM	1,090	1/3	40	50	110	_	75	61.5	120	1	60	MODINE HDC-75	023

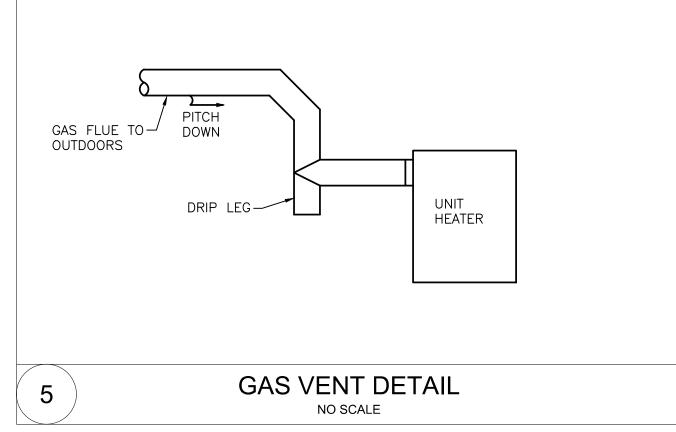
1 PROVIDE TWO STAGE GAS VALVE WITH INTERMITTENT PILOT CONTROL, 100% SHUTOFF WITH CONTINUOUS RETRY.

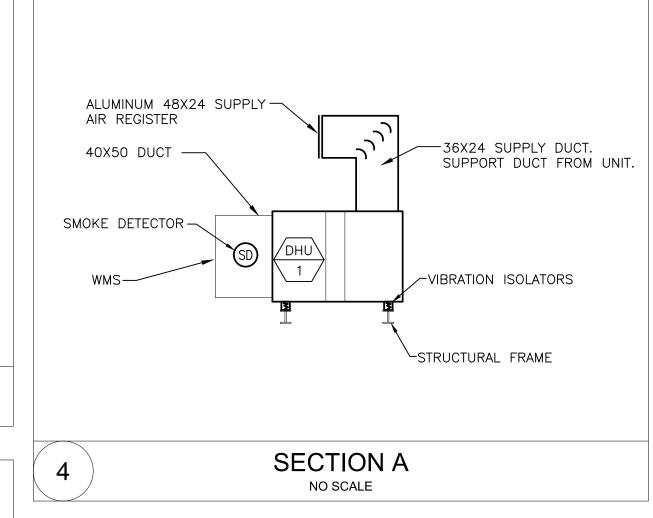
2 PROVIDE NATURAL GAS TO PROPANE GAS CONVERSION KIT.

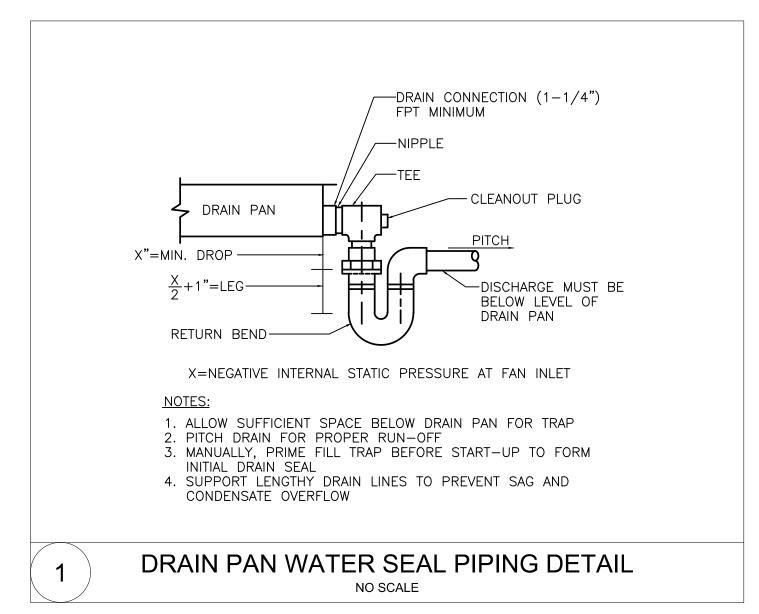
3 PROVIDE WITH SIDEWALL TERMINATION KIT

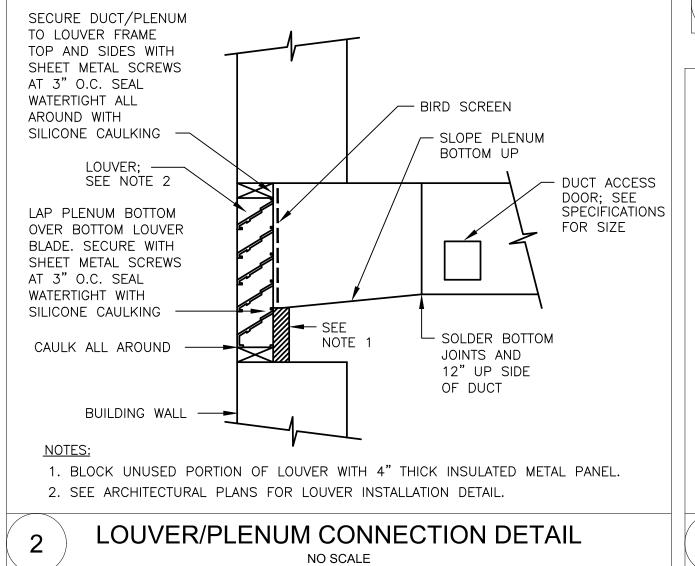
EUH	ELECTRIC HEATER SCHEDULE											
TA 0		CAPACITY	F,	AN DAT	A		MANUEAGTUDED					
TAG NO.	LOCATION	KW	CFM	V	PH	HZ	MANUFACTURER MODEL NUMBER	REMARKS				
EUH-1	ELECTRIC ROOM	3.0	350	480	3	60	QMARK MUH0341					
EWH-1	BATHROOM	1.5	_	120	1	60	QMARK CWH1151DSF					

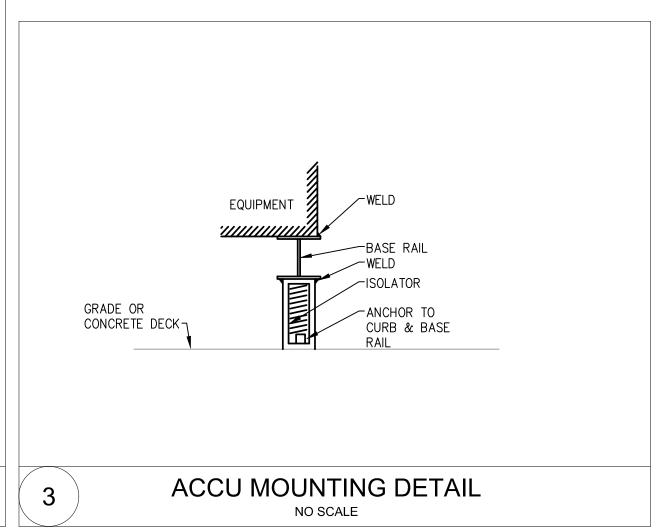

	REMOTE CONDENSER SCHEDULE										
TAG NO.	MANUFACTURER MODEL NO.	EL NO. REFRIG TEMP.					REMARKS				
INO.	OR EQUAL	ITPE	(°F)	QTY	MCA	MOPD	VOLTS	PHASE			
ACC-1	DESERT AIRE RC5S079	R-407C	95	3	_	15	480	3			

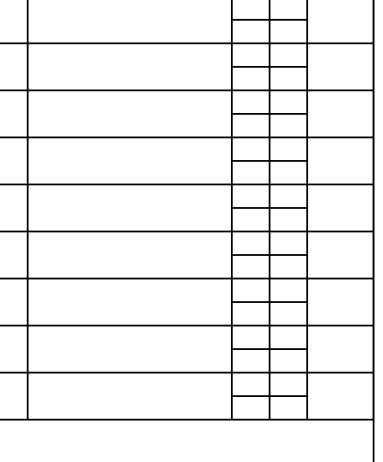

EF	FAN SCHEDULE												
					SPEE	D (RPM)	ELECTRICAL DATA			TA			
TAG NO.	SERVICE	FAN TYPE	CFM	ESP (IN WC)	FAN	MOTOR	HP	V	PH	HZ	MANUFACTURER & MODEL NUMBER	REMARKS	
EF-1	PFAS AREA	WALL MOUNTED DOME	1400	0.50	1411	1725	1/2	120	1	60	GREENHECK CUE-120-VG	023	
EF-2	CHEMICAL AREA	WALL MOUNTED DOME	300	0.50	1662	1725	1/10	120	1	60	GREENHECK CUE-80-VG	023	
EF-3	ELECTRICAL ROOM	INLINE CABINET	500	0.50	1411	1725	1/2	120	1	60	GREENHECK CSP-A510-VG	023	
EF-4	BATHROOM/JANITOR	INLINE CABINET	150	0.50	1221	1350	32W	120	1	60	GREENHECK CSP-A360-VG	023	


1 PROVIDE THERMAL OVERLOAD MOTOR AND STAINLESS STEEL BIRDSCREEN.


2 PROVIDE MOTOR COVER/BELT GUARD, TEFC FAN MOTOR, INLET FLEX DUCT CONNECTION, AND OUTLET WIRE MESH SCREEN.


3 ECM MOTOR





REV	DESCRIPTION	DSN	CHK	DATE
KLV	DESCRIPTION	DWN	APP	DATE

12345

Signed By: ----


SCALE VERIFICATION THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

> IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

HVAC SCHEDULES AND DETAILS

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

PROJECT NO.	2023366	7.002A	
ISSUE DATE	SEP	Г. 2023	
CURRENT REV	ISION	-	
DESIGNED BY		RLB	
DRAWN BY		RLB	
CHECKED BY		RHB	
APPROVED BY		ABB	9)

H-200

PLUMBING NOTES:

- 1. THE WORK COVERED CONSISTS OF FURNISHING ALL LABOR AND MATERIALS NECESSARY TO INSTALL, COMPLETE AND READY FOR CONTINUOUS OPERATION, THE PLUMBING SYSTEMS, APPARATUS AND EQUIPMENT FOR THIS PROJECT.
- 2. ALL EQUIPMENT AND MATERIALS FURNISHED UNDER THE PLUMBING SUB-CONTRACT, LABOR AND TESTING PERFORMED HEREIN SHALL BE IN COMPLETE ACCORDANCE WITH THE STATE BUILDING CODE, LOCAL FUEL GAS AND PLUMBING CODES, ALL LOCAL CODES AND REGULATIONS, NATIONAL FIRE PROTECTION ASSOCIATION, INSURANCE REGULATIONS AND REQUIREMENTS GOVERNING SUCH WORK.
- 3. ANY AND ALL PERMITS REQUIRED FOR INSTALLATION OF ANY MATERIAL SHALL BE OBTAINED AS PART OF THE WORK OF THE SPECIFICATION INCLUDING ALL FEES OR EXPENSES INCURED.
- 4. WHERE WATER PIPING IS SHOWN DROPPING INTO PLUMBING CHASES WITH SIZES NOTED, THAT SIZE SHALL BE BE CARRIED FULL LENGTH THROUGH THE CHASE. REFER TO PLUMBING FIXTURE SCHEDULE ON THIS DRAWING FOR INDIVIDUAL FIXTURE CONNECTION SIZES.
- 5. UNLESS OTHERWISE NOTED, ALL HORIZONTAL DRAINAGE PIPING WHICH IS 3" OR LESS IN DIAMETER SHALL PITCH OF NOT LESS THAN 1/4" PER FOOT AND ALL HORIZONTAL DRAINAGE PIPING WHICH IS 4" OR LARGER IN DIAMETER SHALL PITCH OF NOT LESS THAN 1/8" PER FOOT.
- 6. ALL BELOW FLOOR PIPING THAT INTERSECTS A GRADE BEAM REQUIRES COORDINATION WITH STRUCTURAL. FOR STRUCTURAL DETAILS, REFER TO STRUCTURAL DRAWINGS.
- 7. PROVIDE ALL FLOOR CLEANOUTS WITH HUB AND SPIGOT; LEAD AND OAKUM JOINTS FROM CLEANOUT TO AND INCLUDING CONNECTION TO SANITARY OR STORM DRAIN.
- 8. REFER TO ARCHITECTURAL PLANS FOR EXACT LOCATION OF ALL PLUMBING FIXTURES AND EQUIPMENT.
- 9. ALL BURIED DOMESTIC WATER PIPING, TEMPERED WATER PIPING OR AIR PIPING SHALL BE SOFT ROLLED "K" COPPER COIL AND BE PROTECTED WITH A HIGH DENSITY RUBBER INSULATION. FITTINGS SHALL NOT BE PERMITTED IN OR UNDER SLAB.
 PROVIDE SLAB PENETRATIONS WITH SLEEVE AND FIRE STOPPING.
- 10. INTERIOR PLUMBING AND HVAC EQUIPMENT REQUIRING A LP GAS CONNECTION SHALL BE PROVIDED WITH AN EMERGENCY GAS RELIEF VENT AT EACH GAS TRAIN IN ACCORDANCE WITH THE MASSACHUSETTS FUEL GAS CODE AND AS INDICATED WITH THE FOLLOWING CHART:

CELL	AMOUT OF	SIZE	OF EACH RELIEF	VENT
<u>CFH</u>	<u>RELIEF VENTS</u> <u>REQUIRED</u>	<u>0' TO 40'</u>	<u>0' TO 100'</u>	<u>0' TO 200'</u>
UNDER 1,000 CFH 1,000 CFH TO 2,500 CFH 2,500 CFH TO 12,500 CFH OVER 12,500 CFH	1 3 3 4	3/4" 3/4" 3/4" 3/4"	1" 1" 1" 1"	1 1/4" 1 1/4" 1 1/4" 1 1/4"

- 11. MISCELLANEOUS DISCREPANCIES OR OMMISSIONS WHICH MIGHT APPEAR ON THE PLANS OR SPECIFICATIONS WILL NOT RELIEVE THE PLUMBING SUB-CONTRACTOR OF CODE COMPLIANCE.
- 12. ALL FLOOR DRAINS SHALL BE PROVIDED WITH A TRAP PRIMER CONNECTION.
 THIS CONTRACTOR SHALL PROVIDE ALL ASSOCIATED EQUIPMENT NECESSARY
 TO PROVIDE A COMPLETE SYSTEM INCLUDING AN ELECTRONICALLY OPERATED PRIMING MANIFOLD AND ALL ASSOCIATED PIPING REQUIRED.
- 13. GAS FIRED EQUIPMENT PROVIDE FULL SIZE SOV AND DRIP LEG IN ACCESSIBLE LOCATION. MAKE FINAL CONNECTION TO EQUIPMENT WITH NECESSARY REDUCER AND UNION CONNECTION. PC TO COORDINATE EXACT CONNECTION SIZE, LOAD, LOCATION, AND EQUIPMENT ACCESS NEEDS PRIOR TO GAS INSTALLATION.

PLUMBING FIXTURE SCHEDULE								
DESIGNATION	FIXTURE DESCRIPTION	CW	CON HW	NECTION TW	SIZE S/W	l v	REMARKS	
ES-1	EMERGENCY SHOWER/EYEWASH	-	-	1-1/4"		-	GUARDIAN G1950 — SEE NOTE 1 — SEE NOTE 7	
WC-1	WATER CLOSET - FLOOR MTD.	1"	-	-	4"	2"	SEE SPECIFICATION	
LAV-1	LAVATORY	1/2"	1/2"	-	2"	2"	SEE SPECIFICATION	
JS-1	JANITOR SINK	3/4"	3/4"	-	3"	2"	SEE SPECIFICATION	
TMV	THERMOSTATIC MIXING VALVE	-	-	1-1/4"	-	-	LAWLER MODEL 911E - SEE NOTE 3	
НВ	HOSE BIBB	1/2"	-	-	-	-	INTEGRAL VACUUM BREAKER W/ VANDAL RESISTANT "T" HANDLE KEY - SEE NOTE 2	
WH	WALL HYDRANT	1/2"	-	-	-	-	NON-FREEZE, QUARTER TURN, INTEGRAL VACUUM BREAKER W/ VANDAL RESISTANT "T" HANDLE KEY - SEE NOTE 2	
FD	FLOOR DRAIN	-	-	-	2"	2"	SEE SPECIFICATION. PROVIDE WITH TRAP PRIMER.	

NOTES:

- 1. PROVIDE FLOW SWITCH WITH SINGLE POLE, DOUBLE THROW CONTACTS, AND 20 GPM BALANCING REGULATOR (G6040).
- 2. MOUNT FIXTURE 4-0" AFF
- 3. PROVIDE DIAL THERMOMETER ON INLETS.
 5. ALL EXPOSED VALVES, PIPING AND FITTINGS SHALL BE CHROME PLATED.
- 6. PLUMBING CONTRACTOR SHALL PROVIDE EACH CONNECTION TO EACH SINK OR PIECE OF EQUIPMENT WITH ITS OWN INDIVIDUAL SHUTOFF VALVE
- 7. PROVIDE 90° ELBOW FOR EYEWASH DRAIN OUTLET TO DRAIN DIRECT ON FLOOR.

GAS FIRED TANKLESS WATER HEATER SCHEDULE								
TAG NO.	MANUFACTURER AND MODEL NO.	MAX INPUT (MBH)	CONTINUOUS FLOW RATE (GPM) AT 80° RISE	FLUE SIZE (IN.)	OUTLET TEMP SETTING (°F)	REMARKS		
TWH-1	NORITZ MODEL NC380	380	7.8	6	120	LP GAS, INSTALL PER MANUFACTURER'S INSTRUCTIONS FOR MULTI-UNIT INSTALLATION		

PLUMBING LEGEND

SYMBOL	ABBREVIATION	DESCRIPTION
		ABOVE FLOOR PIPING (INDICATED AS SINGLE LINEWORK) BELOW FLOOR PIPING (INDICATED AS DOUBLE LINEWORK) NEW WORK (INDICATED AS HEAVY LINEWORK)
	CW	COLD WATER
	HW	HOT WATER
	HWR	HOT WATER RECIRCULATION
———TW———	TW	TEMPERED WATER
	S/W	SANITARY DRAINAGE (SOIL/WASTE)
	FLUE	FLUE EXHAUST
G	G	GAS (LIQUID PROPANE)
 0	UP	UP (PENETRATES LEVEL ABOVE)
 ⇒		RISE (BUT DOES NOT PENETRATE LEVEL ABOVE)
 ⇒	DN	DOWN (PENETRATES LEVEL BELOW)
 ⇒	DP	DROP (BUT DOES NOT PENETRATE LEVEL BELOW)
 .01		DIRECTION OF FLOW
<u> </u>		DIRECTION & DESIGNATION OF SLOPE (IN FT/FT)
	F) (4	SHUTOFF VALVE
	BVA	BALANCING VALVE ASSEMBLY
	CV	CHECK VALVE
——————————————————————————————————————	PRV	PRESSURE REDUCING VALVE
→	DV	DRAIN VALVE WITH HOSE THREADS
		GAS SHUTOFF VALVE
Ŷ Ţ	PG	PRESSURE GAUGE
ф	SA	SHOCK ABSORBER
<u> </u>	CO	CLEANOUT
<u></u>	WCO	WALL CLEANOUT
	FCO	FLOOR CLEANOUT
0	FD	FLOOR DRAIN
	HB	HOSE BIBB
	WH	WALL HYDRANT
	NIPC	NOT IN PLUMBING CONTRACT
	PC	PLUMBING CONTRACTOR
	NO	NORMALLY CLOSED
	NC INV	NORMALLY CLOSED INVERT ELEVATION
	CFH	CUBIC FEET PER HOUR
- ∞	W&T	WASTE & TRAP
~	VIV	VALVE IN VERTICAL
- ∞	OED	OPEN END DRAIN
2	VTR	VENT THRU ROOF
 3	CC	CAPPED CONNECTION
	UN	UNION
——————	ST	STRAINER
	WTS	WATER TIGHT SLEEVE
- -	<u>P-</u>	PLUMBING FIXTURE DESIGNATION
\circ	WM	WATER METER
N OR	RPBP	REDUCED PRESSURE BACKFLOW PREVENTER
	TWH	TANKLESS WATER HEATER
	FFE	FINISHED FLOOR ELEVATION
	LPC	LIMIT PLUMBING CONTRACT
	TDL	TOTAL DEVELOPED LENGTH
⊕		EMERGENCY SHOWER/EYE WASH STATION
<u> </u>		EMERGENCY SHOWER STATION
_		

SHOCK ABSORBER SCHEDULE*						
PDI RATING SYMBOL	Α	В	С	D	E	
PRECISION PLUMBING PRODUCTS	SC-500	SC-750	SC-1000	SC-1250	SC-1500	
WATTS REGULATOR COMPANY	0750030	0750053	0750060	0750070	0750090	
WADE	5-P	10-P	20-P	50-P	75-P	

* MANUFACTURERS NAMES AND MODEL NUMBERS ARE SHOWN ONLY TO REPRESENT TYPE, STYLE AND LEVEL OF QUALITY EXPECTED, SIMILAR PRODUCTS BY OTHER MANUFACTURERS WILL BE ACCEPTABLE.

Signe	d By:	#	<i>‡</i> 12345	
REV	DESCRIPTION	DSN	СНК	DA
		DWN	APP	

THIS BAR IS 1 INCH IN LENGTH
ON ORIGINAL DRAWING

IF IT'S NOT 1 INCH ON THIS
SHEET ADJUST YOUR
SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

PLUMBING LEGEND AND GENERAL NOTES

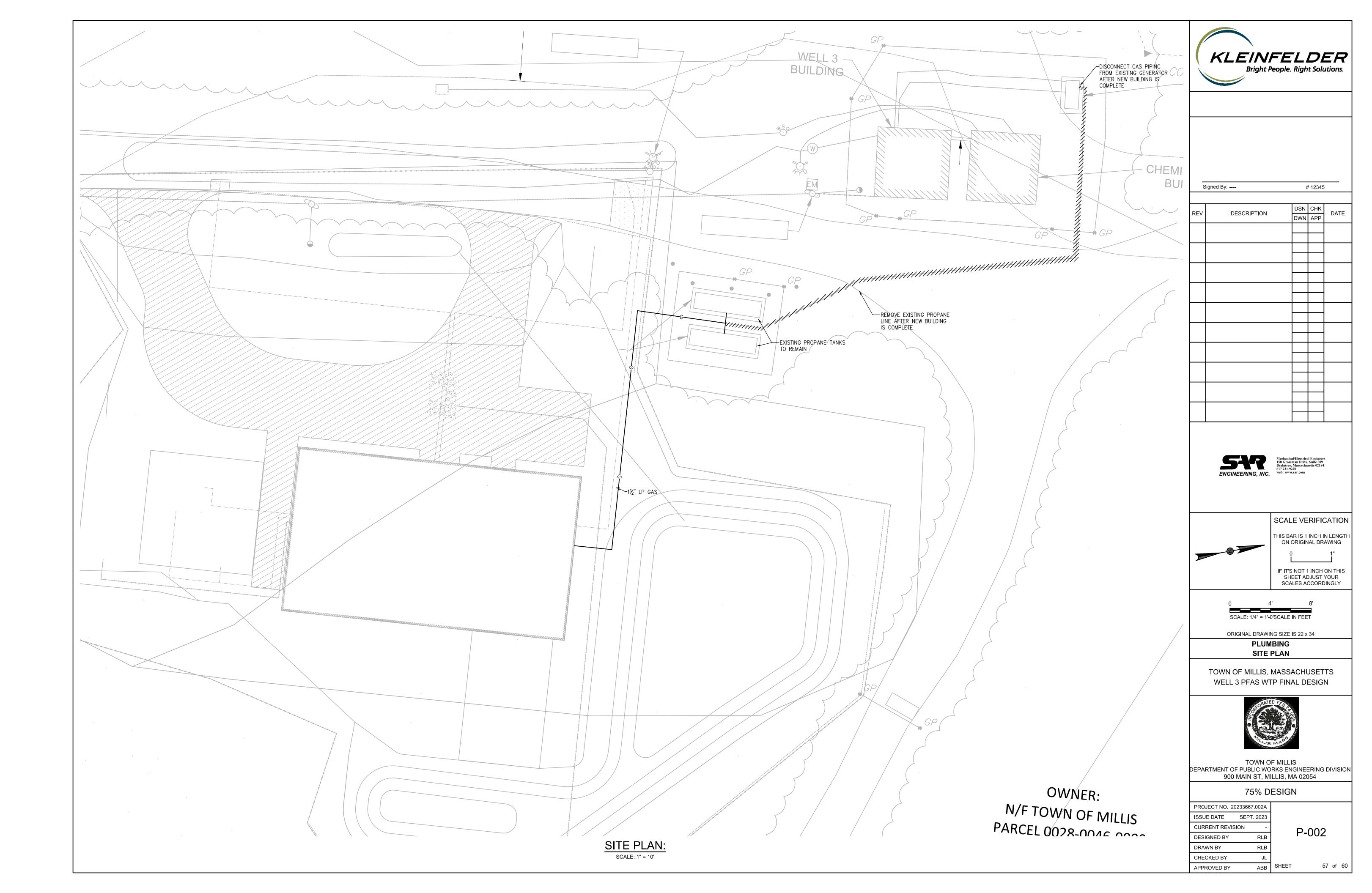
TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

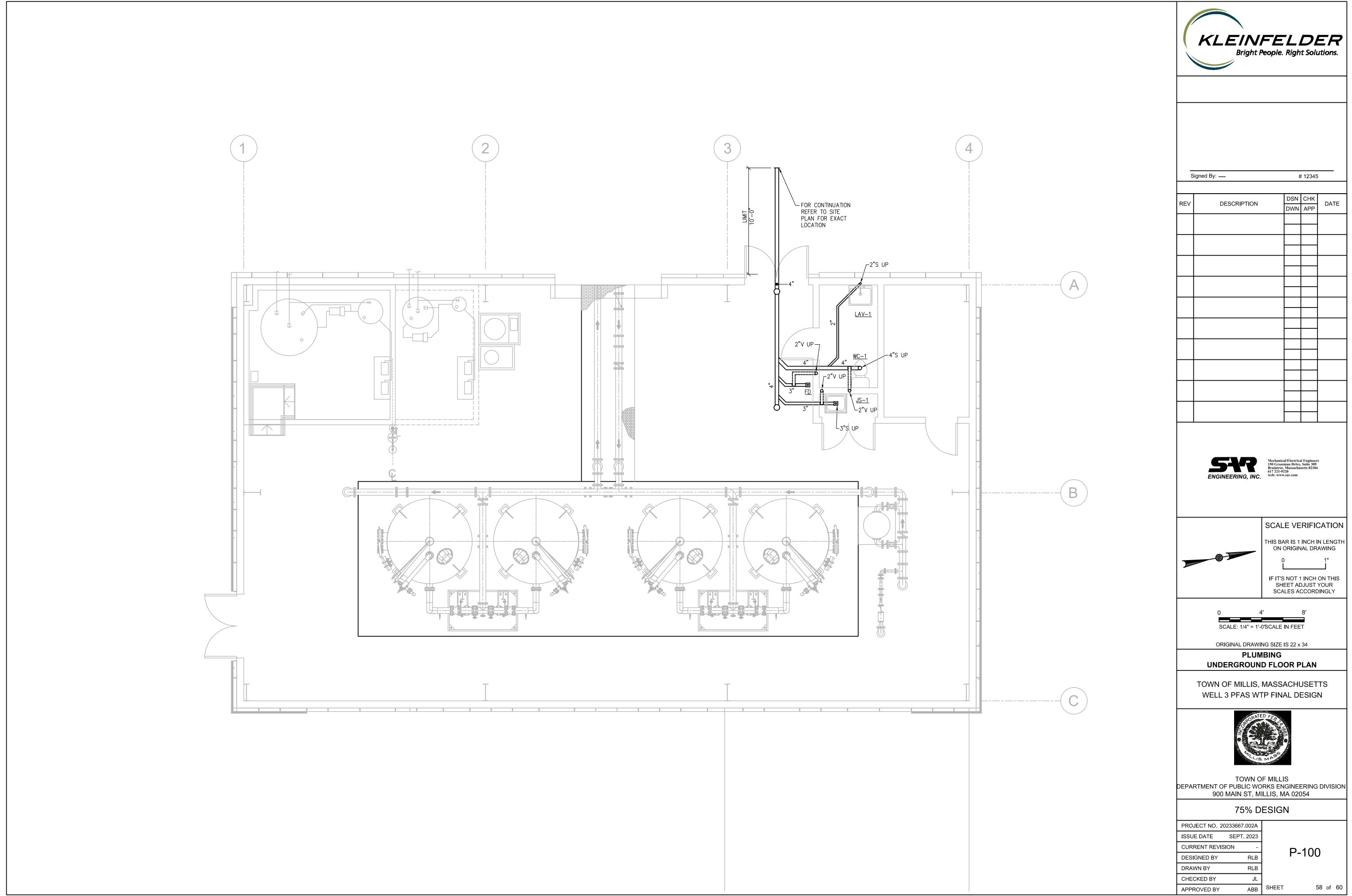
TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054

75% DESIGN

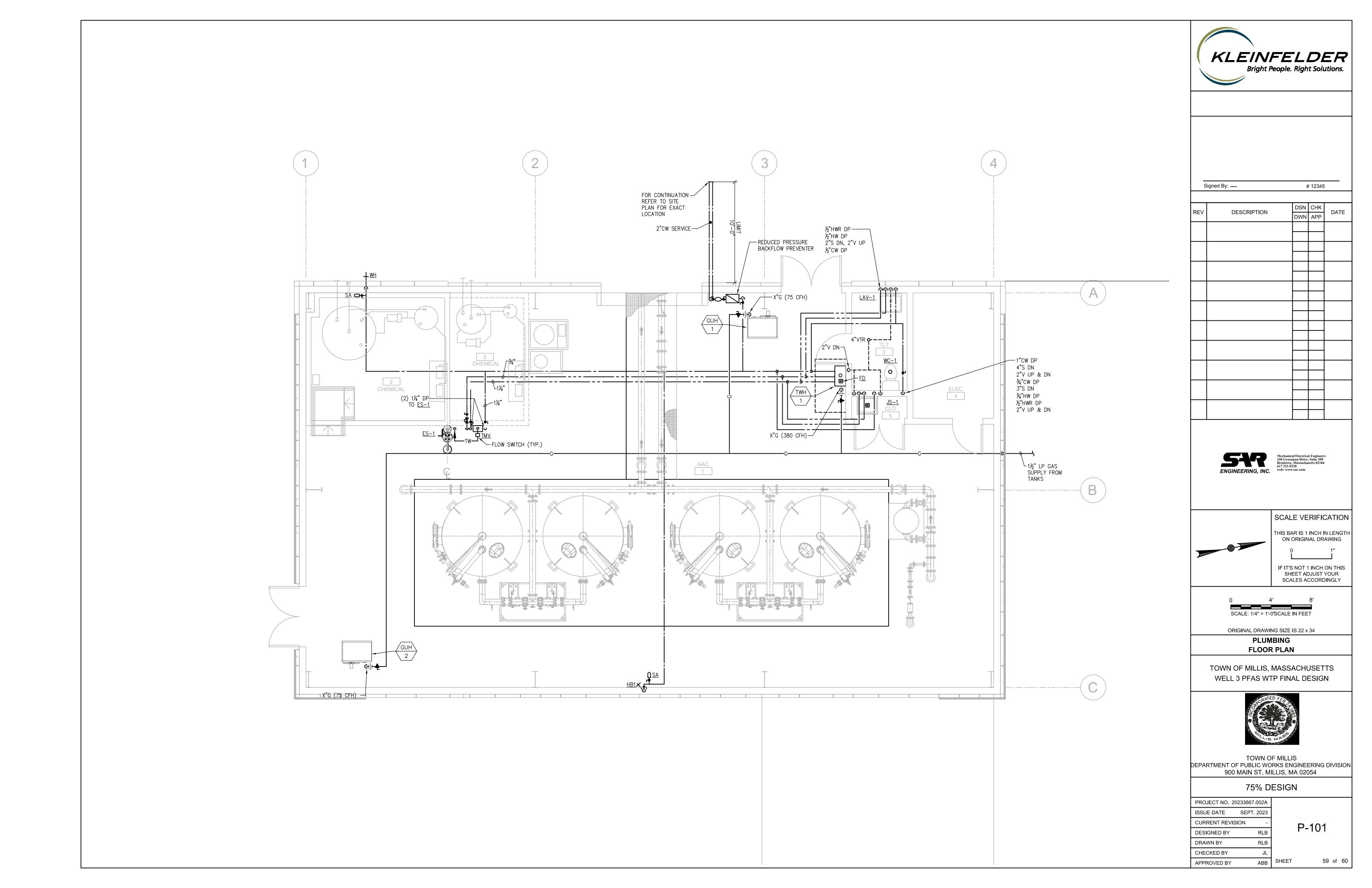
PROJECT NO. 20233667.002A

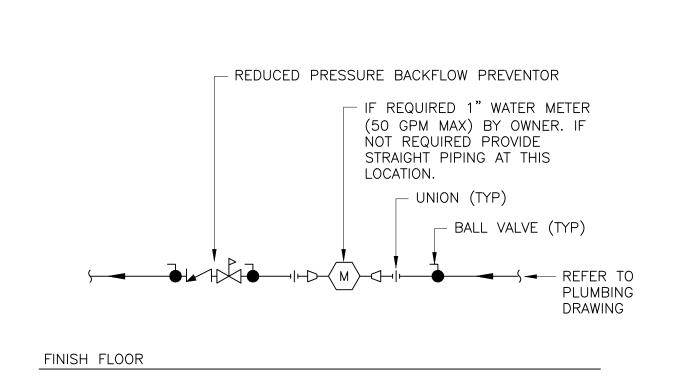
ISSUE DATE SEPT. 2023

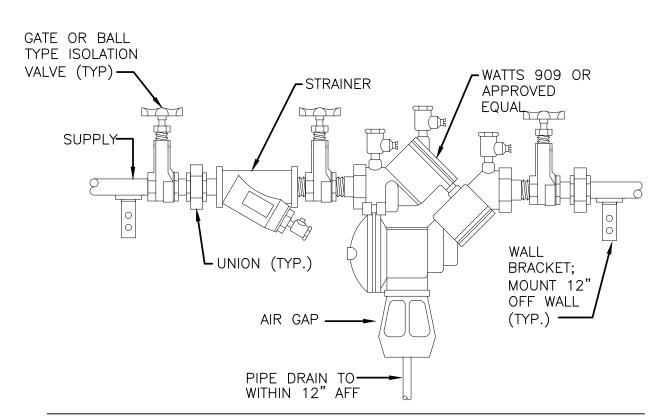

CURRENT REVISION
DESIGNED BY RLB

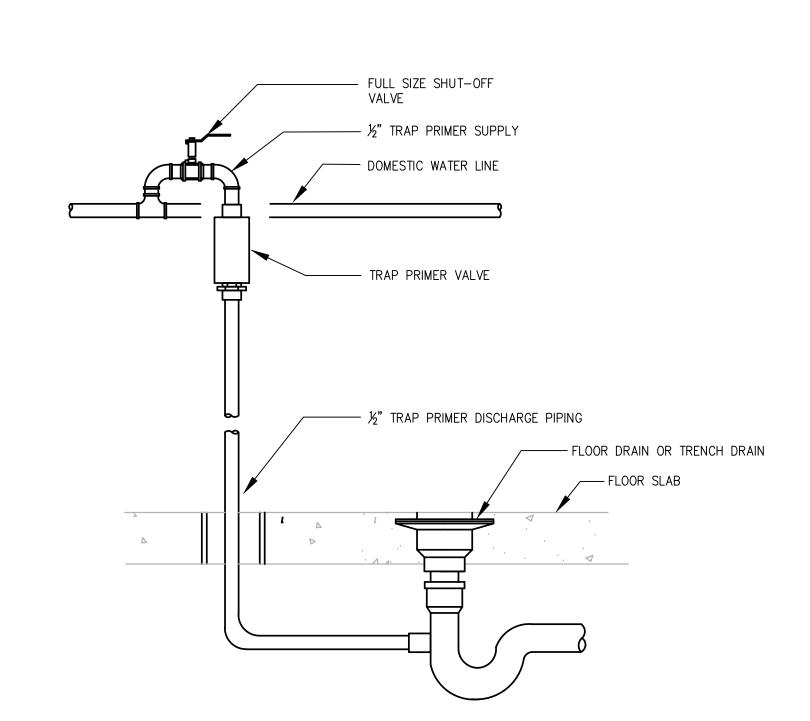

DRAWN BY RLB

CHECKED BY JL

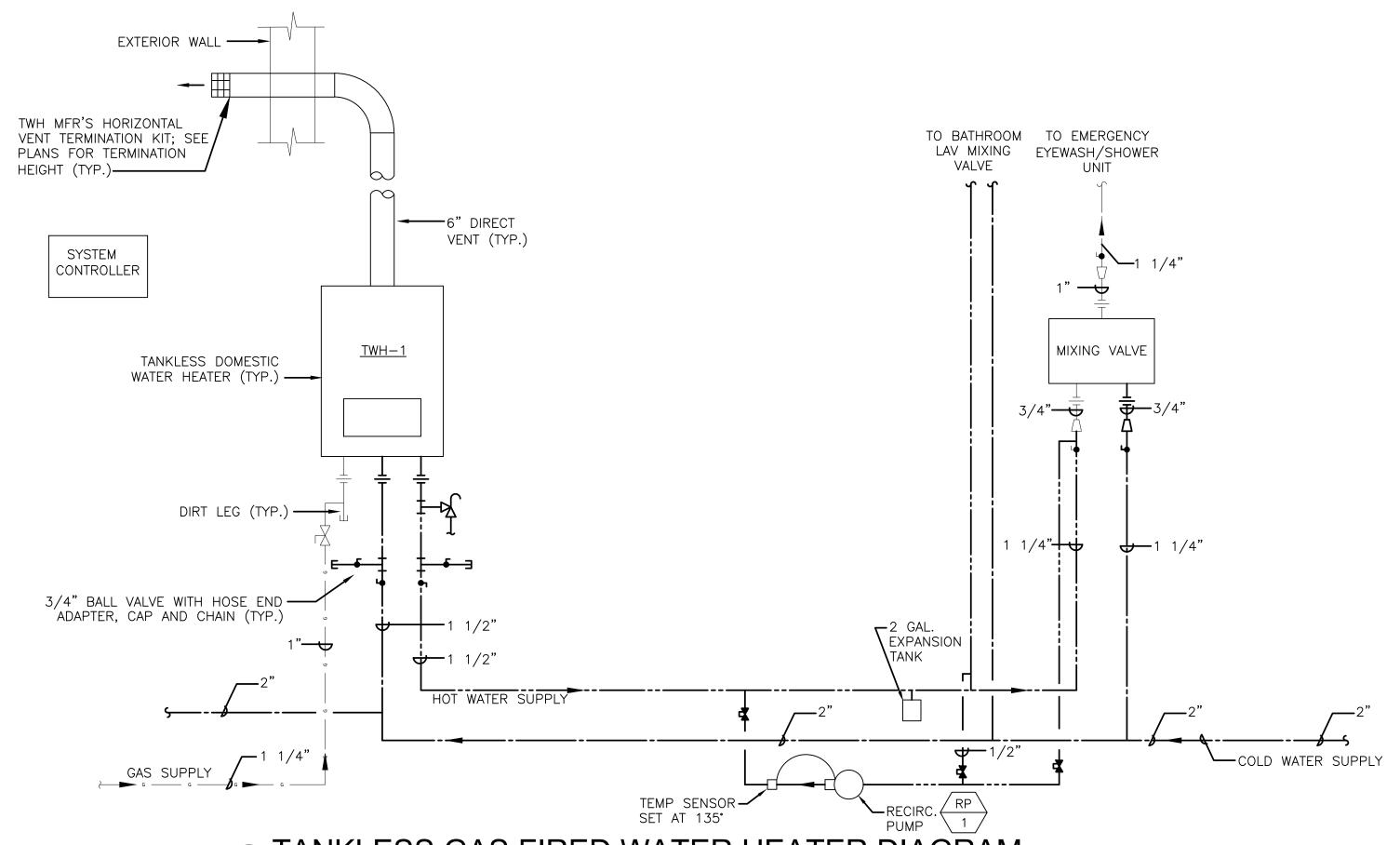

P-001


SHEET 56





					NOTES: 1.	HANGER SHIELD IS		
	INSULATION	SHIELD LENGTH	(X")]	TYPICAL FOR INSULATED PIPING		
PIPE SIZE	INSULA 1/2""	ATION THICKNES 3/4"	S 1"	GAUGE	2.	CORK, WOOD OR CALCIUM SILICATE SHALL BE INSTALLED BETWEEN THE		
1/2" TO 3"	12"	12"	12"	18	1	AND THE INSULATION SHIELD TO SI	JPPORT LOAD BELOW	
4"	12"	12"	12"	16	1	THE PIPE AND PREVENT THE PIPE	INSULATION HEX NUTS ———	
5"	18"	18"	18"	16	1	FROM BEING CRUSHED.	CLEVIS HANGER	
6"	18"	18"	18"	16	T 1/1	ROD	ANSI B27.2-1965 PLATE	
8" TO 14"	24"	24"	24"	14		LOCK NUT	WASHER (BOTH SIDES)	
						HANGER	ANSI B27,2—1965 PLATE WASHER (BOTH SIDES) USE WHEN HANGER ROD SIZE IS LESS THAN PIPE HANGER ROD SIZE —	
						INSULATION	PIPE HANGER ROD SIZE —	
						— PIPING	DESIGN LOAD:	
							330 LBS @ 3/8," ROD,	
			(<i>-</i> -				330 LBS @ 3/8" ROD, 380 LBS @ 1/2" ROD, 450 LBS @ 5/8" ROD, 630 LBS @ 3/4" ROD	
							630 LBS @ 3/4" ROD'	
				\			180° INSULATION ———	
			/	_T)——			SHIELD (WHERE INSULATION	
				<u> </u>			SPECIFIED)	
					X/2"	X/2" INSULATION SHIELD	DIDE INCLUATION	
					^/	^// _	PIPE INSULATION ———— (WHERE SPECIFIED)	
				/	Х	/	(



TANKLESS GAS FIRED WATER HEATER DIAGRAM NOT TO SCALE

Signed By: ----# 12345

REV	DESCRIPTION	DSN	CHK	DATE
KEV	DESCRIPTION	DWN	APP	DATE

SCALE VERIFICATION

THIS BAR IS 1 INCH IN LENGTH ON ORIGINAL DRAWING

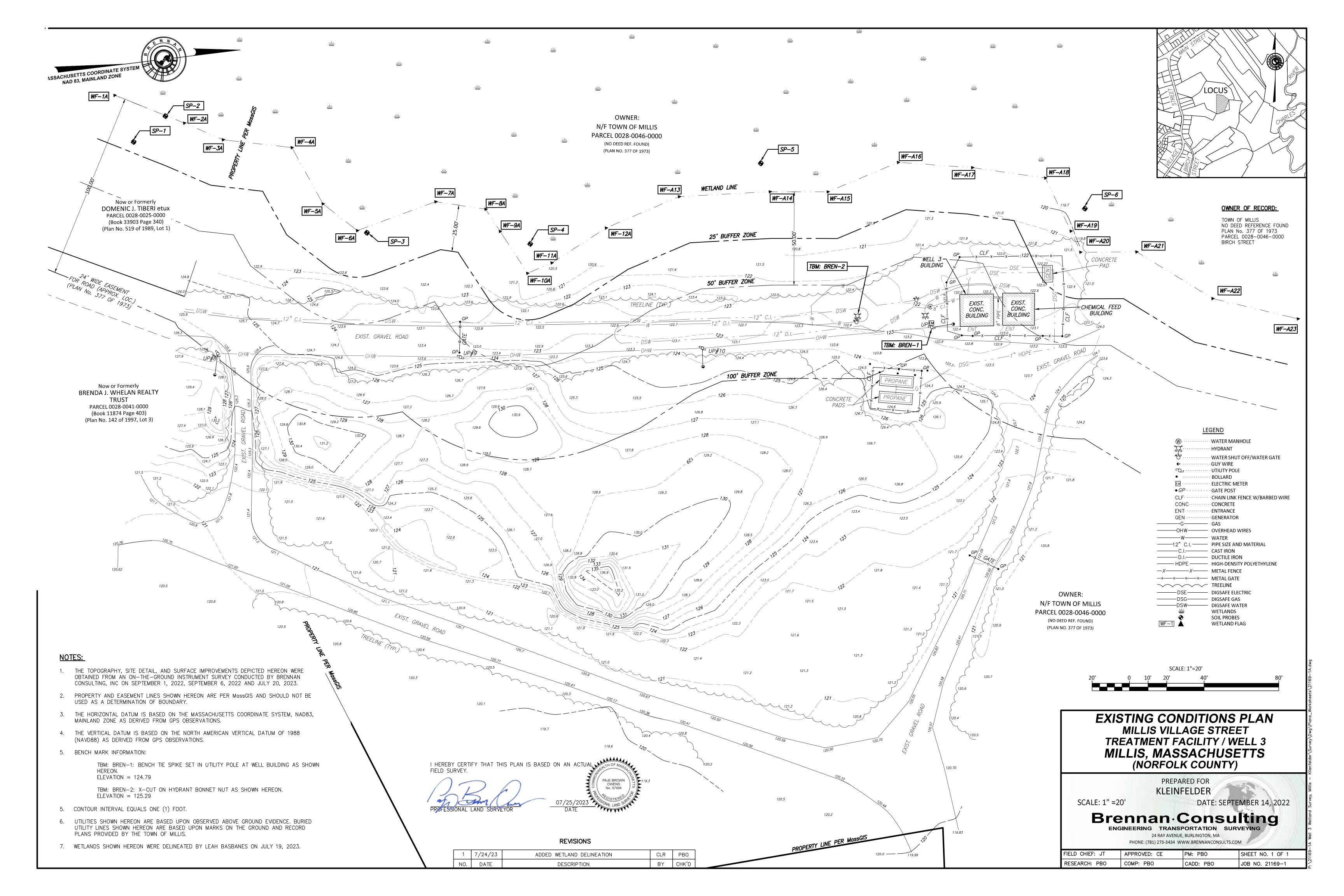
IF IT'S NOT 1 INCH ON THIS SHEET ADJUST YOUR SCALES ACCORDINGLY

ORIGINAL DRAWING SIZE IS 22 x 34

PLUMBING DETAILS

TOWN OF MILLIS, MASSACHUSETTS WELL 3 PFAS WTP FINAL DESIGN

TOWN OF MILLIS DEPARTMENT OF PUBLIC WORKS ENGINEERING DIVISION 900 MAIN ST, MILLIS, MA 02054


75% DESIGN

	. 0 70 2
PROJECT NO.	20233667.002A
ISSUE DATE	SEPT. 2023
CURRENT RE\	/ISION -
DESIGNED BY	RLB
DRAWN BY	RLB
CHECKED BY	JL

APPROVED BY

P-200

ABB SHEET 60 of 60

ATTACHMENT E Stormwater Report

MEMORANDUM

TO: Town of Millis Conservation Commission

FROM: Greg Avenia, P.E., Kleinfelder

DATE: October 2023

SUBJECT: Millis Well 3 PFAS Treatment Facility Design, Village Street, Millis, MA 02054

CC: Tyler Bernier, P.E., Kleinfelder

This Stormwater Management Report has been prepared to show compliance with the Massachusetts Stormwater Management Standards to support the Project's Notice of Intent Application.

The Town of Millis is proposing the installation of a 70' x 45' PFAS treatment facility to support Well 3 off Village Street in Millis, MA. The proposed development will also include the installation of above-ground backwash storage tanks, associated utilities including a tight tank sewer system, a paved driveway and an infiltration basin.

1 EXISTING DRAINAGE CONDITIONS

The proposed site is adjacent to the existing Well 3 facilities, southwest along the existing gravel driveway. The intersection of the gravel driveway and Birch Street is approximately 1,500 feet to the southwest. Under existing conditions, the proposed 31,581 square-foot site is mostly wooded. Wooded area borders the site to the south, the gravel driveway and wetland to the west, existing Well 3 infrastructure to the north, and a grassed field to the east past a loop in the gravel driveway.

The entirety of the site is within the Charles River watershed. Stormwater drains in two directions from a high point to the southeast of the proposed site. Approximately half of the site drains to the wetlands to the northwest, with the rest draining towards Maple Swamp located to the east. Both wetlands ultimately connect to the Charles River.

2 PROPOSED DRAINAGE CONDITIONS

Stormwater flows will emulate existing drainage conditions to the maximum extent possible, however a portion of the site that currently drains to the wetlands west of the site has been rerouted to the east to maximize water quality and quantity treatment via the proposed infiltration basin. Kleinfelder estimates that the proposed development will create approximately 7,510 square feet of new impervious area, comprised of the proposed treatment building, paved driveway, and concrete pad for above-ground backwash storage tanks. The existing chemical feed building will be demolished down to existing grade and the equipment will

be relocated to the new treatment facility. The working area of the site will be graded to emulate existing drainage patterns in slopes ranging from 1% to approximately 5%. Proposed grades will be tied into existing grade at a maximum of 3:1 H:V slopes.

A stormwater swale along the existing gravel drive will capture the majority of runoff coming from the proposed building roof, the paved access drive, and concrete pad. The swale will direct stormwater to the proposed infiltration basin to the north of the site via an 8-inch pipe. Stormwater from the rear of the building will be directed to the proposed basin by a berm. The project site has been located and designed so that the impact within the 100-foot wetland buffer and 100-year flood zone are minimized to the maximum extent possible.

3 HYDROLOGIC ANALYSIS

A HydroCAD hydrologic analysis was performed under both existing and proposed conditions. Each model was analyzed for the 1, 2, 5, 10, 25, and 100-year storm events. Rainfall data was acquired from the Precipitation Frequency Data Server maintained by NOAA. The total watershed for the site was measured to be approximately 0.65 acres. Stormwater flow comes from an existing high point southeast of the project site and flows to the wetland to the west or to Maple Swamp to the east.

The soil data used for this analysis was acquired via the Web Soil Survey, provided by NRCS. Within the project site, areas not classified as water or impervious areas are generally hydrologic soil group A. Soils on the site are classified as very sandy loams and loamy sands.

For analysis of existing conditions, the site was divided into two main sub-watershed areas separated by a natural high point that extends across the project area, effectively dividing the site in half.

- SC-1 is approximately 24,786 square feet in area. It represents the western portion of the site and is comprised of woods in good conditions, unconnected impervious area, such as building roofs and tank concrete pads, and gravel access road. Stormwater drains across the access drive to the wetland west of the site.
- SC-2 is approximately 19,349 square feet in area. It encompasses the easter portion of the site and drains to the east toward Maple Swamp. Ground cover in this area is entirely woods in good condition.

Under proposed conditions, the site was separated into five sub-watershed areas based on proposed drainage features and grading.

- SC-1 is approximately 3,356 square feet in area. It represents a portion of the site driveway the drains to the west before being captured by the proposed stormwater system. Ground cover in this area includes paved surfaces, gravel access drive, and grassed area.
- SC-2 is approximately 11,864 square feet in area. It encompasses most of the developed area of the site that flows to the west. Ground cover includes paved surface, concrete pads, building roofs, and

grassed area. Stormwater from this area is captured by the proposed stormwater system and routed to an infiltration basin.

- SC-3 is approximately 9,595 square feet in area. This subcatchment area includes areas of direct flow from the north and east sides of the site into the infiltration basin. Ground cover includes grassed areas and the area of the infiltration basin, classified as water surface area.
- SC-4 is approximately 7,531 square feet in area. This encompasses the backside of the berm on the east side of the proposed infiltration basin, pressure relief outlet, and woods extending to the gravel road surrounding the site. Ground cover in this area is classified as a wood/grass combination.
- SC-5 is approximately 11,789 square feet in area. This represents the area on the west side of the
 site that is not captured by the stormwater system and flows directly to the western wetland. The
 ground cover in this area includes the existing well 3 building, the existing gravel access drive, and
 grassed area.

The watershed area has been standardized between the two analyses to allow direct comparison of the impact of the proposed development. Both models include two design points that are used to analyze and compare stormwater flow rates and volumes.

- Design Point 1, or "DP-1" represents the wetlands to the west of the project site.
- Design Point 2, or "DP-2" represents outflow from the project site to the east, ultimately into Maple Swamp.

4 MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION (MASSDEP) — STORMWATER MANAGEMENT STANDARDS

As demonstrated below, the proposed Project complies with the MassDEP Stormwater Management Standards (the Standards) to the maximum extent practicable. Under the Stormwater Management Standards, the Project is considered a new develop project because it involves the construction of a new drinking water treatment facility. The Project has been designed to meet the Stormwater Management Standards to the maximum extent practicable and to improve upon existing conditions.

4.1 STANDARD 1: NO NEW UNTREATED DISCHARGES

No new stormwater conveyance (e.g., outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

No change:

The Project has been designed to comply with Standard 1. Under existing conditions, there are no existing outfalls within the project area and no best management practices in place; runoff currently flows overland directly from the site to the wetlands to the west, or to Maple Swamp to the east. Under proposed conditions, a portion of the stormwater originally destined to flow from the site to the western wetlands will be intercepted by a proposed swale and rerouted to the proposed infiltration basin. On the eastern portion of the site, a berm will redirect runoff toward the proposed basin. No untreated discharges are proposed.

- A stone gabion basket weir is proposed to create a sediment forebay within the proposed infiltration basin to provide the required pretreatment.
- The infiltration basin will provide primary water quality treatment for this development. The basin has been sized to accommodate the 100-year 24-hour storm event for areas that drain to it. An emergency overflow weir with riprap erosion protection is proposed as a precautionary measure.

4.2 STANDARD 2: PEAK RATE ATTENUATION

Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

Standard Met:

The Project has been designed to comply with Standard 2. The infiltration basin on the north side of the site will receive all the runoff from the impervious area added as a result of the development. The existing access road will be regraded near the proposed stormwater swale on the western side of the site to capture the maximum amount of runoff practicable. Areas that are not paved will be loamed and seeded at the end of construction.

A HydroCAD analysis was performed on both existing and proposed conditions, attached under Appendix C. A summary of this analysis in relation to standard 2 is below:

TABLE 1: PEAK FLOWS AT DESIGN POINT 1

Design Storm	Existing Peak Flow (cfs)	Proposed Peak Flow (cfs)		
1-Year	0.62	0.41		
2-Year	0.77	0.51		
5-Year	1.02	0.67		
10-Year	1.23	0.81		
25-Year	1.51	1.01		
100-Year	1.95	1.38		

TABLE 2: PEAK FLOWS AT DESIGN POINT 2

Design Storm Existing Peak Flow (cfs)		Proposed Peak Flow (cfs)		
1-Year	0.00	0.00		
2-Year	0.00	0.00		
5-Year	0.00	0.00		
10-Year	0.00	0.00		
25-Year	0.01	0.00		
100-Year	0.07	0.05		

The post-development peak rates are equal to or less than the peak rates under existing conditions for all the analyzed storm events.

4.3 STANDARD 3: STORMWATER RECHARGE

Loss of annual recharge to groundwater shall be eliminated or minimized through the use of environmentally sensitive site design, low impact development techniques, stormwater management practices and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from pre-development conditions based on soil types. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Standard Met:

The Project has been designed to comply with Standard 3. The proposed infiltration basin has 5,937 cubic feet of storage and can infiltrate the 100-year storm event for most of the project site. The required recharge volume calculation is included below.

TABLE 3: IMPERVIOUS AREA SUMMARY FOR STANDARD 3

Existing Impervious Area (sq. ft)	Proposed Impervious Area (sq. ft)	Change (sq. ft)	
894	8,404	+7,510	

The project site is surrounded by Hydrologic Soil Group A soils. Per the Massachusetts Stormwater Handbook, a recharge rate of 0.6 inches (0.05 feet) shall be used for all impervious area in areas with Hydrologic Soil Group A, the highest recharge rate outlined in the definition of Standard 3. When this rate is applied to the proposed additional impervious area of 0.18 acres or 7,753 square feet, the required recharge volume associated with this impervious area is calculated to 646 cubic feet. The proposed stormwater management system can store and infiltrate more than this required volume. See Appendix E for stormwater storage calculations.

4.4 STANDARD 4: WATER QUALITY

Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This Standard is met when:

- a) Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained.
- b) Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
- c) Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

Standard Met:

The Project has been designed to comply with Standard 4. The project ultimately discharges to the Charles River (MA 72-05), a class 5 waterbody per Massachusetts 2022 Integrated List of Waters.

Table 3 shows the stormwater treatment provided for the proposed development. Water Quality Volumes were calculated for the first 1.0" of runoff per the Massachusetts Stormwater Handbook new development standards.

TABLE 4: REQUIRED WATER QUALITY VOLUME (WQV) AT DESIGN POINT 1

Watershed	Area	Required WQV	Provided WQV	
Existing Total Impervious Area	894 sf	0 cf*	0.4	
Proposed New Impervious Area (in addition to existing)	-354 sf	0 cf	0 cf	

^{*}To Max. Extent Practicable

TABLE 5: REQUIRED WATER QUALITY VOLUME (WQV) AT DESIGN POINT 2

Watershed	Area	Required WQV	Provided WQV	
Existing Total Impervious Area	0 sf	0 cf*	2 240 -4	
Proposed New Impervious Area (in addition to existing)	7,864 sf	655 cf	3,348 cf	

^{*}To Max. Extent Practicable

A Long-Term Pollution Prevention Plan (LTPPP) and Operation & Maintenance Plan is included in Appendix D.

4.5 STANDARD 5: LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS (LUHPPLS)

For Land Uses with Higher Potential Pollutant Loads (LUHPPLs), source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all LUHPPLs cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from LUHPPLs shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

No change:

Standard 5 does not apply to the Project. There are no Land Uses with Higher Potential Pollutant Loads within the project area.

4.6 STANDARD 6: CRITICAL AREAS

Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply and stormwater discharges near or to any other critical area require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "stormwater discharge" as defined in 314 CMR 3.04(2)(a)1 or (b), to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

Standard Met:

The project is within a Zone I Wellhead Protection Area. However, the proposed infiltration basin is sized to accommodate the 100-year 24-hour storm event without discharging to the surrounding area. An emergency overflow weir is provided as a precautionary measure but is not anticipated to see flow up to and including the 100-year storm event. Additionally, the project proposed is essential to the operation of a public water supply. Thus, Standard 6 is met.

4.7 STANDARD 7: REDEVELOPMENTS AND OTHER PROJECTS SUBJECT TO THE STANDARDS ONLY TO THE MAXIMUM EXTENT PRACTICABLE

A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

No substantive change:

The Project is considered a new development and is subject to all Standards 1 through 10.

4.8 STANDARD 8: CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROLS

A plan to control construction-related impacts, including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

Standard Met:

The site plans call for the installation of sediment control barriers around the perimeter of the site to prevent off-site sediment transport. A construction exit will be provided to reduce transport of sediment off-site via construction traffic. All stockpiles will be surrounded with straw wattle during the earthwork phase of construction. A SWPPP will be prepared by the contractor prior to the onset of construction.

During construction, the contractor will be required to address any erosion issues that appear as a result of land disturbance. This may include the installation of additional sediment barrier, temporary erosion control matting, or temporary seeding. Erosion control measures will be repaired as necessary during construction. The contractor will be required to install and maintain all erosion control measures in accordance with the Massachusetts Stormwater Handbook.

Stormwater controls must be maintained in good operating condition until all disturbed soils are permanently stabilized. To ensure this, the following areas will be inspected by the Contractor every week and after every rainfall event of 0.5 inches or greater:

The following standard maintenance practices will apply to the erosion and sedimentation controls for the project:

- All erosion and sediment control measures will be properly maintained. If repairs or other maintenance is necessary, it will be initiated by the Contractor within 24 hours of report;
- Straw Wattles will be inspected for depth of sediment, tears, to see if the fabric is securely attached to the fence posts, and to see that the fence posts are firmly in the ground;
- Built up sediment will be removed from straw wattles when it has reached one-half the height of the fence and at end of the job;
- Erosion control measures will be maintained for disturbed areas of the site that have not been stabilized;
- Erosion control measures will be installed and maintained for the construction staging area, stockpiles, and material storage areas until those areas have been stabilized after construction; and,
- Temporary and permanent seeding and planting will be inspected for bare spots, washouts, and healthy growth.

If the inspections reveal the need for additional control devices to prevent erosion and sedimentation, the Contractor will promptly install additional protection devices as required. Control devices in need of repair will be repaired promptly after identification. A stockpile of 100 linear feet of straw wattles will be maintained on the site and under cover for emergency repairs and routine maintenance.

The Owner (or their representative) will be responsible for preparing an inspection and maintenance report following each inspection and filing completed reports after maintenance action has taken place by the Contractor. The Contractor's superintendent will be responsible for maintenance and repair activities and completing and signing the maintenance action portion of inspection and maintenance reports.

4.9 STANDARD 9: OPERATION AND MAINTENANCE PLAN

A Long-Term Operation and Maintenance (O&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

Standard Met:

An Operation & Maintenance Plan is referenced as Appendix D and is provided under separate cover.

4.10 STANDARD 10: PROHIBITION OF ILLICIT DISCHARGES

All illicit discharges to the stormwater management system are prohibited.

No change

<u>Illicit Discharge Statement</u> The project's stormwater management system, as shown on the plans submitted with this report, have been designed in full compliance with Standard 10. The project area does not have any known illicit connections.

Attachments: Appendix A – Stormwater Checklist

Appendix B - Drainage Figures

Appendix C – HydroCAD Analysis

C.1 – Existing Conditions C.2 – Proposed Conditions

Appendix D – Stormwater Operation and Maintenance Plan

Appendix E – Water Quality Calculation

Appendix F – Project Data: NOAA Rainfall and NRCS Web Soil Survey

Appendix G – Boring Log

Appendix A Stormwater Checklist Stormwater Checklist

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

Millis SWCheck.doc • 04/01/08

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

oformation presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.					
Registered Professional Engineer Block and Signature					
Signature and Date					
Cignatale and Sate					
Checklist	_				
Project Type: Is the application for new development, redevelopment redevelopment?	, or a mix of new and				
New development ■ New development New development ■ New development New development					
Redevelopment					
☐ Mix of New Development and Redevelopment					

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

env	vironmentally sensitive design and LID Techniques were considered during the planning and design of project:				
	No disturbance to any Wetland Resource Areas				
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)				
	Reduced Impervious Area (Redevelopment Only)				
	Minimizing disturbance to existing trees and shrubs				
	LID Site Design Credit Requested:				
	☐ Credit 1				
	☐ Credit 2				
	☐ Credit 3				
	Use of "country drainage" versus curb and gutter conveyance and pipe				
	Bioretention Cells (includes Rain Gardens)				
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)				
	Treebox Filter				
	Water Quality Swale				
	Grass Channel				
	Green Roof				
	Other (describe): Infiltration Basin				
Sta	ndard 1: No New Untreated Discharges				
\boxtimes	No new untreated discharges				
	Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth				
	Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.				

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued) Standard 2: Peak Rate Attenuation Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding. Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm. Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm. Standard 3: Recharge Soil Analysis provided. Required Recharge Volume calculation provided. Required Recharge volume reduced through use of the LID site Design Credits. Sizing the infiltration, BMPs is based on the following method: Check the method used. ☐ Static Simple Dynamic Dynamic Field¹ Runoff from all impervious areas at the site discharging to the infiltration BMP. Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume. Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason: Site is comprised solely of C and D soils and/or bedrock at the land surface M.G.L. c. 21E sites pursuant to 310 CMR 40.0000 Solid Waste Landfill pursuant to 310 CMR 19.000 Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable. Calculations showing that the infiltration BMPs will drain in 72 hours are provided. Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	necklist (continued)
Sta	andard 3: Recharge (continued)
	The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10-year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
	Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.
Sta	indard 4: Water Quality
The	E Long-Term Pollution Prevention Plan typically includes the following: Good housekeeping practices; Provisions for storing materials and waste products inside or under cover; Vehicle washing controls; Requirements for routine inspections and maintenance of stormwater BMPs; Spill prevention and response plans; Provisions for maintenance of lawns, gardens, and other landscaped areas; Requirements for storage and use of fertilizers, herbicides, and pesticides; Pet waste management provisions; Provisions for operation and management of septic systems; Provisions for solid waste management; Snow disposal and plowing plans relative to Wetland Resource Areas; Winter Road Salt and/or Sand Use and Storage restrictions; Street sweeping schedules; Provisions for prevention of illicit discharges to the stormwater management system; Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL; Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan; List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
	A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent. Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
	is within the Zone II or Interim Wellhead Protection Area
	is near or to other critical areas
	is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
	involves runoff from land uses with higher potential pollutant loads.
П	The Required Water Quality Volume is reduced through use of the LID site Design Credits.

☑ Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if

applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Cł	Checklist (continued)					
Sta	Standard 4: Water Quality (continued)					
\boxtimes	The BMP is sized (and calculations provided) based on:					
	☐ The ½" or 1" Water Quality Volume or					
	☐ The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.					
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.					
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.					
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)					
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior to</i> the discharge of stormwater to the post-construction stormwater BMPs.					
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.					
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.					
	All exposure has been eliminated.					
	All exposure has <i>not</i> been eliminated and all BMPs selected are on MassDEP LUHPPL list.					
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.					
Sta	ndard 6: Critical Areas					
	The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.					

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

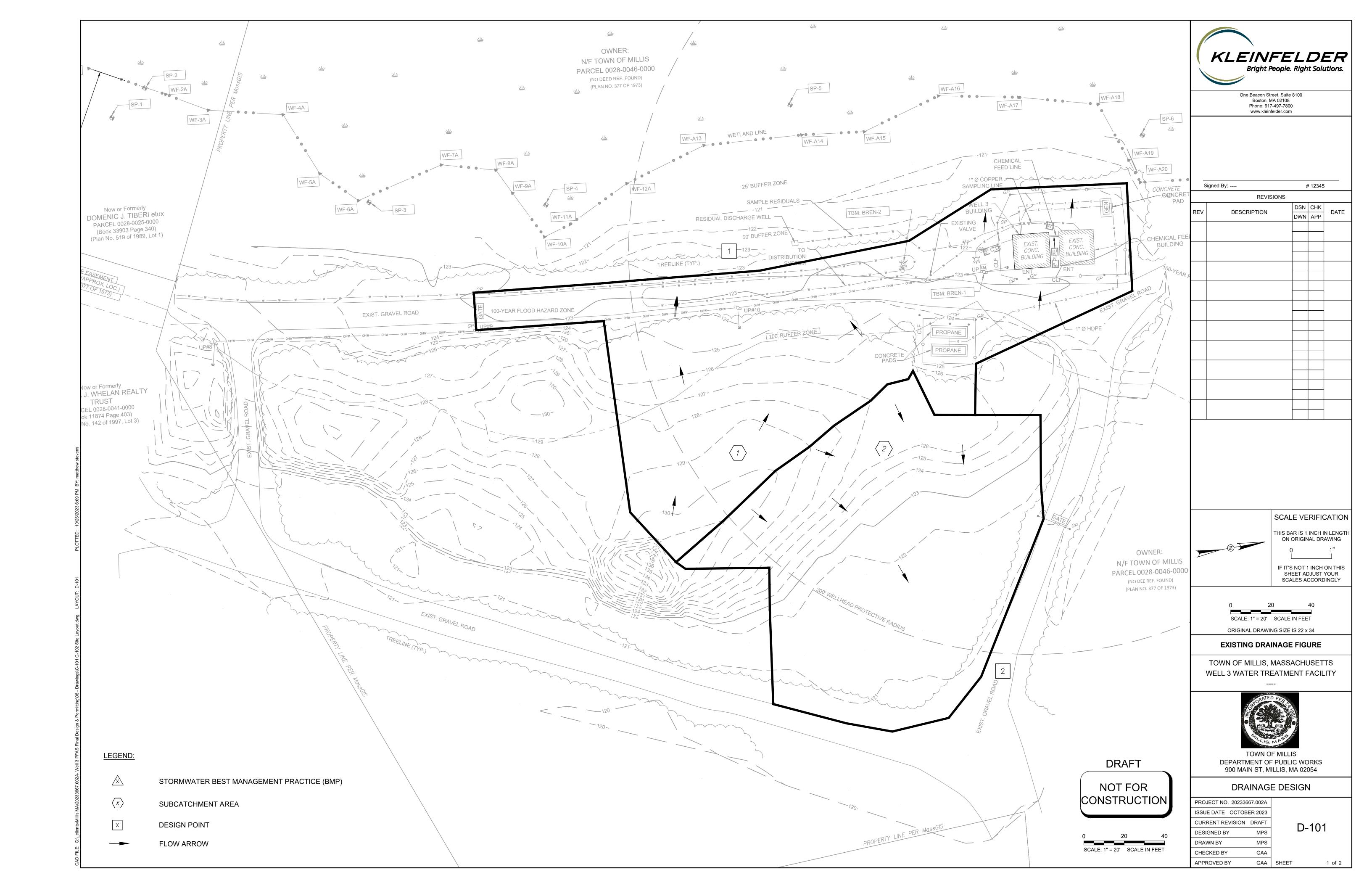
	andard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum tent practicable The project is subject to the Stormwater Management Standards only to the maximum Extent
ш	Practicable as a:
	☐ Limited Project
	 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected
	from exposure to rain, snow, snow melt and runoff
	☐ Bike Path and/or Foot Path
	Redevelopment Project
	Redevelopment portion of mix of new and redevelopment.
	Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
	The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

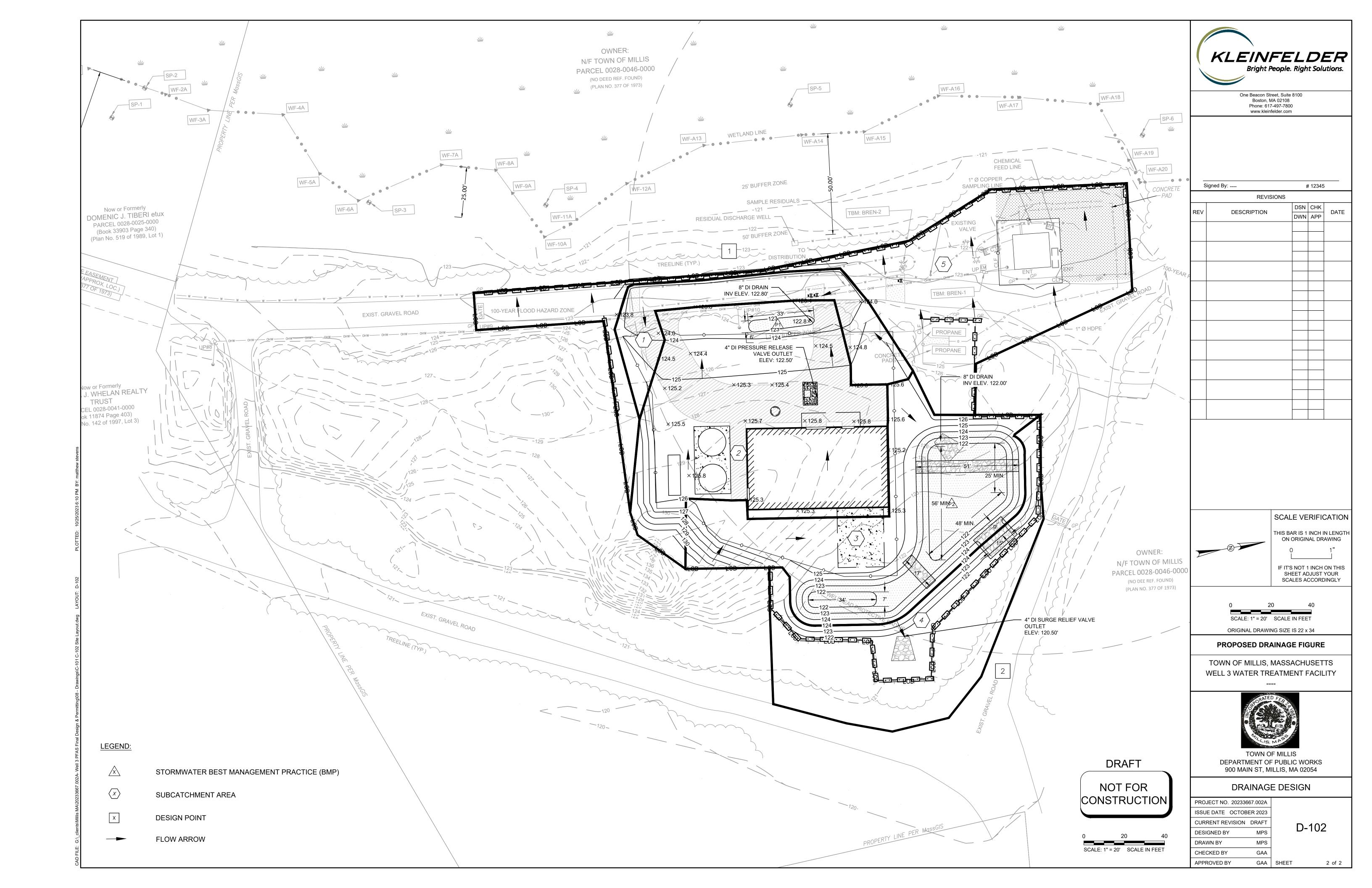
Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

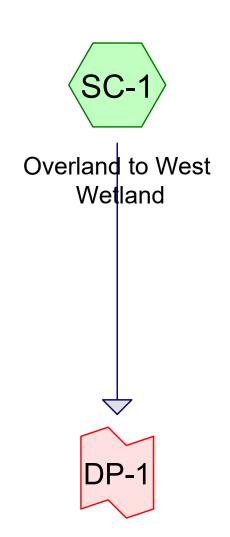
Massachusetts Department of Environmental ProtectionBureau of Resource Protection - Wetlands Program


Checklist for Stormwater Report

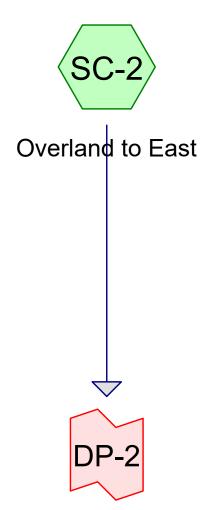

Checklist (continued)

	ndard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control ntinued)
	The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be submitted <i>before</i> land disturbance begins.
\boxtimes	The project is <i>not</i> covered by a NPDES Construction General Permit.
	The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the
	Stormwater Report. The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.
Sta	ndard 9: Operation and Maintenance Plan
	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
	Name of the stormwater management system owners;
	□ Party responsible for operation and maintenance;
	Schedule for implementation of routine and non-routine maintenance tasks;
	☑ Plan showing the location of all stormwater BMPs maintenance access areas;
	□ Description and delineation of public safety features;
	☐ Estimated operation and maintenance budget; and
	○ Operation and Maintenance Log Form.
	The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
	A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
	A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.
Sta	ndard 10: Prohibition of Illicit Discharges
\boxtimes	The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
\boxtimes	An Illicit Discharge Compliance Statement is attached;
	NO Illicit Discharge Compliance Statement is attached but will be submitted <i>prior to</i> the discharge of any stormwater to post-construction BMPs.

Appendix B Drainage Figures



Appendix C HydroCAD Analysis



Appendix C.1 Existing Conditions

Millis Well 3 Existing Conditions

East Low Point

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Millis Well 3 Existing
Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Printed 10/25/2023 Page 2

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type III 24-hr		Default	24.00	1	2.76	2
2	2-Year	Type III 24-hr		Default	24.00	1	3.39	2
3	5-Year	Type III 24-hr		Default	24.00	1	4.42	2
4	10-Year	Type III 24-hr		Default	24.00	1	5.28	2
5	25-Year	Type III 24-hr		Default	24.00	1	6.45	2
6	100-Year	Type III 24-hr		Default	24.00	1	8.27	2

Millis Well 3 Existing
Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Printed 10/25/2023 Page 3

Area Listing (all nodes)

Area	CN	Description
 (acres)		(subcatchment-numbers)
0.226	96	Gravel surface, HSG A (SC-1)
0.021	98	Impervious, HSG A (SC-1)
0.766	30	Woods, Good, HSG A (SC-1, SC-2)
1.013	46	TOTAL AREA

Type III 24-hr 1-Year Rainfall=2.76" Printed 10/25/2023

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=1.01"

Tc=6.0 min CN=WQ Runoff=0.62 cfs 0.048 af

SubcatchmentSC-2: Overland to East Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.00"

Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af

Link DP-1: West Wetlands

Inflow=0.62 cfs 0.048 af
Primary=0.62 cfs 0.048 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.000 af

Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.048 af Average Runoff Depth = 0.57" 97.97% Pervious = 0.993 ac 2.03% Impervious = 0.021 ac HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.62 cfs @ 12.09 hrs, Volume= 0.048 af, Depth= 1.01"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

	Area (sf)	CN	Description						
	14,031	30	Woods, Go	od, HSG A					
	9,861	96	Gravel surfa	ace, HSG A	4				
*	894	98	Impervious,	, HSG A					
	24,786		Weighted A	Weighted Average					
	23,892	57	96.39% Pervious Area						
	894	98	3.61% Impervious Area						
<u>(r</u>	Tc Length min) (feet)	Slop (ft/	,	Capacity (cfs)	Description				
	6.0				Direct Entry, Tc Min				

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

A	rea (sf)	CN [Description						
	19,349	30 \	Woods, Good, HSG A						
	19,349	30 ′	100.00% Pe	ervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0		·			Direct Entry, Tc Min				

Summary for Link DP-1: West Wetlands

Inflow Area = 0.569 ac, 3.61% Impervious, Inflow Depth = 1.01" for 1-Year event

Inflow = 0.62 cfs @ 12.09 hrs, Volume= 0.048 af

Primary = 0.62 cfs @ 12.09 hrs, Volume= 0.048 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 1-Year Rainfall=2.76"

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Printed 10/25/2023

Page 6

Summary for Link DP-2: East Low Point

Inflow Area = 0.444 ac, 0.00% Impervious, Inflow Depth = 0.00" for 1-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 2-Year Rainfall=3.39" Printed 10/25/2023

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=1.28"

Tc=6.0 min CN=WQ Runoff=0.77 cfs 0.061 af

SubcatchmentSC-2: Overland to East Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.00"

Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af

Link DP-1: West Wetlands

Inflow=0.77 cfs 0.061 af
Primary=0.77 cfs 0.061 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.000 af

Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.061 af Average Runoff Depth = 0.72" 97.97% Pervious = 0.993 ac 2.03% Impervious = 0.021 ac HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.77 cfs @ 12.09 hrs, Volume= 0.061 af, Depth= 1.28"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

	Area (sf)	CN	Description							
	14,031	30	Woods, Go	od, HSG A						
	9,861	96	Gravel surfa	ace, HSG A	4					
*	894	98	Impervious,	HSG A						
	24,786		Weighted A	Weighted Average						
	23,892	57	96.39% Pervious Area							
	894	98	3.61% Impervious Area							
	-	01		0 :	D					
	Tc Length		,	Capacity	Description					
((min) (feet)	(ft/	ft) (ft/sec)	(cfs)						
	6.0				Direct Entry, Tc Min					

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

A	rea (sf)	CN [Description						
	19,349	30 \	Woods, Good, HSG A						
	19,349	30 ′	100.00% Pe	ervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0		·			Direct Entry, Tc Min				

Summary for Link DP-1: West Wetlands

Inflow Area = 0.569 ac, 3.61% Impervious, Inflow Depth = 1.28" for 2-Year event

Inflow = 0.77 cfs @ 12.09 hrs, Volume= 0.061 af

Primary = 0.77 cfs @ 12.09 hrs, Volume= 0.061 af, Atten= 0%, Lag= 0.0 min

Prepared by Kleinfelder

Type III 24-hr 2-Year Rainfall=3.39" Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 9

Summary for Link DP-2: East Low Point

Inflow Area = 0.444 ac, 0.00% Impervious, Inflow Depth = 0.00" for 2-Year event

Inflow 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min Primary

Type III 24-hr 5-Year Rainfall=4.42"

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Printed 10/25/2023

Page 10

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=1.73"

Tc=6.0 min CN=WQ Runoff=1.02 cfs 0.082 af

SubcatchmentSC-2: Overland to East Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.00"

Tc=6.0 min CN=30 Runoff=0.00 cfs 0.000 af

Link DP-1: West Wetlands Inflow=1.02 cfs 0.082 af

Primary=1.02 cfs 0.082 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.000 af

Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.082 af Average Runoff Depth = 0.97" 97.97% Pervious = 0.993 ac 2.03% Impervious = 0.021 ac HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 11

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 1.02 cfs @ 12.09 hrs, Volume= 0.082 af, Depth= 1.73"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

	Area (sf)	CN	Description						
	14,031	30	Woods, Go	od, HSG A					
	9,861	96	Gravel surfa	ace, HSG A	A				
*	894	98	Impervious,	HSG A					
	24,786		Weighted A	Weighted Average					
	23,892	57	96.39% Pervious Area						
	894	98	3.61% Impervious Area						
	Tc Length		,	Capacity	Description				
1)	min) (feet) (ft/	ft) (ft/sec)	(cfs)		_			
	6.0				Direct Entry, Tc Min				

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

A	rea (sf)	CN [Description						
	19,349	30 \	Woods, Good, HSG A						
	19,349	30 ′	100.00% Pe	ervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0		·			Direct Entry, Tc Min				

Summary for Link DP-1: West Wetlands

Inflow Area = 0.569 ac, 3.61% Impervious, Inflow Depth = 1.73" for 5-Year event

Inflow = 1.02 cfs @ 12.09 hrs, Volume= 0.082 af

Primary = 1.02 cfs @ 12.09 hrs, Volume= 0.082 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 5-Year Rainfall=4.42" Prepared by Kleinfelder Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 12

Summary for Link DP-2: East Low Point

Inflow Area = 0.444 ac, 0.00% Impervious, Inflow Depth = 0.00" for 5-Year event

Inflow 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min Primary

Type III 24-hr 10-Year Rainfall=5.28"

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 13

Printed 10/25/2023

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=2.10"

Tc=6.0 min CN=WQ Runoff=1.23 cfs 0.100 af

SubcatchmentSC-2: Overland to East Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.02"

Tc=6.0 min CN=30 Runoff=0.00 cfs 0.001 af

Link DP-1: West Wetlands

Inflow=1.23 cfs 0.100 af
Primary=1.23 cfs 0.100 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.001 af

Primary=0.00 cfs 0.001 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.100 af Average Runoff Depth = 1.19" 97.97% Pervious = 0.993 ac 2.03% Impervious = 0.021 ac

Prepared by Kleinfelder

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Printed 10/25/2023 Page 14

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 1.23 cfs @ 12.09 hrs, Volume= 0.100 af, Depth= 2.10"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

	Area (sf)	CN	Description						
·	14,031	30	Woods, Go	od, HSG A					
	9,861	96	Gravel surfa	ace, HSG A	4				
*	894	98	Impervious,	Impervious, HSG A					
	24,786		Weighted A	Weighted Average					
	23,892	57	96.39% Pervious Area						
	894	98	3.61% Impervious Area						
_	'a lanath	Clar	aa Valaaitu	Consoity	Description				
	c Length	Slop	,	Capacity	Description				
(mir	n) (feet)	(ft/	ft) (ft/sec)	(cfs)					
6.	0				Direct Entry, Tc Min				

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.00 cfs @ 22.19 hrs, Volume= 0.001 af, Depth= 0.02"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

A	rea (sf)	CN I	Description						
	19,349	30 \	Woods, Good, HSG A						
	19,349	30 ′	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, Tc Min				

Summary for Link DP-1: West Wetlands

Inflow Area = 0.569 ac, 3.61% Impervious, Inflow Depth = 2.10" for 10-Year event

Inflow = 1.23 cfs @ 12.09 hrs, Volume= 0.100 af

Primary = 1.23 cfs @ 12.09 hrs, Volume= 0.100 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 10-Year Rainfall=5.28" Printed 10/25/2023

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 15

Summary for Link DP-2: East Low Point

Inflow Area = 0.444 ac, 0.00% Impervious, Inflow Depth = 0.02" for 10-Year event

Inflow = 0.00 cfs @ 22.19 hrs, Volume= 0.001 af

Primary = 0.00 cfs @ 22.19 hrs, Volume= 0.001 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 25-Year Rainfall=6.45"

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Printed 10/25/2023

<u>Page 16</u>

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=2.67"

Tc=6.0 min CN=WQ Runoff=1.51 cfs 0.127 af

SubcatchmentSC-2: Overland to East Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.13"

Tc=6.0 min CN=30 Runoff=0.01 cfs 0.005 af

Link DP-1: West Wetlands Inflow=1.51 cfs 0.127 af Primary=1.51 cfs 0.127 af

Link DP-2: East Low Point Inflow=0.01 cfs 0.005 af

Primary=0.01 cfs 0.005 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.131 af Average Runoff Depth = 1.56" 97.97% Pervious = 0.993 ac 2.03% Impervious = 0.021 ac

Prepared by Kleinfelder

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 17

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 1.51 cfs @ 12.09 hrs, Volume= 0.127 af, Depth= 2.67"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

	Α	rea (sf)	CN	Description								
		14,031	30	Woods, Go	Woods, Good, HSG A							
		9,861	96	Gravel surface, HSG A								
*		894	98	Impervious	Impervious, HSG A							
_		24,786		Weighted Average								
		23,892	57	96.39% Per	vious Area	l .						
		894	98	3.61% Impe	ervious Are	a						
	Tc	Length	Slop	e Velocity	Capacity	Description						
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)							
	6.0					Direct Entry, Tc Min						

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.01 cfs @ 14.96 hrs, Volume= 0.005 af, Depth= 0.13"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

A	rea (sf)	CN I	Description					
	19,349	30 \	Woods, Good, HSG A					
	19,349	30 ′	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, Tc Min			

Summary for Link DP-1: West Wetlands

Inflow Area = 0.569 ac, 3.61% Impervious, Inflow Depth = 2.67" for 25-Year event

Inflow = 1.51 cfs @ 12.09 hrs, Volume= 0.127 af

Primary = 1.51 cfs @ 12.09 hrs, Volume= 0.127 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 25-Year Rainfall=6.45" Printed 10/25/2023

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 18

Summary for Link DP-2: East Low Point

Inflow Area = 0.444 ac, 0.00% Impervious, Inflow Depth = 0.13" for 25-Year event

Inflow = 0.01 cfs @ 14.96 hrs, Volume= 0.005 af

Primary = 0.01 cfs @ 14.96 hrs, Volume= 0.005 af, Atten= 0%, Lag= 0.0 min

Type III 24-hr 100-Year Rainfall=8.27" Printed 10/25/2023

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 19

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=24,786 sf 3.61% Impervious Runoff Depth=3.66"

Tc=6.0 min CN=WQ Runoff=1.95 cfs 0.174 af

SubcatchmentSC-2: Overland to East Runoff Area=19,349 sf 0.00% Impervious Runoff Depth=0.48"

Tc=6.0 min CN=30 Runoff=0.07 cfs 0.018 af

Link DP-1: West Wetlands

Inflow=1.95 cfs 0.174 af
Primary=1.95 cfs 0.174 af

Link DP-2: East Low Point Inflow=0.07 cfs 0.018 af

Primary=0.07 cfs 0.018 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.191 af Average Runoff Depth = 2.27" 97.97% Pervious = 0.993 ac 2.03% Impervious = 0.021 ac

Page 20

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 1.95 cfs @ 12.09 hrs, Volume= 0.174 af, Depth= 3.66"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

	Area (sf)	CN	Description							
	14,031	30	Woods, Go	Woods, Good, HSG A						
	9,861	96	Gravel surface, HSG A							
*	894	98	Impervious,	Impervious, HSG A						
	24,786		Weighted A	Weighted Average						
	23,892	57	96.39% Pervious Area							
	894	98	3.61% Impe	3.61% Impervious Area						
-	Fa Langth	Clar	aa Valaaitu	Consoity	Description					
	Γc Length	Slop	,	Capacity	Description					
(mi	n) (feet)	(ft/1	ft) (ft/sec)	(cfs)						
6	.0				Direct Entry, Tc Min					

Summary for Subcatchment SC-2: Overland to East

Runoff = 0.07 cfs @ 12.40 hrs, Volume= 0.018 af, Depth= 0.48"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

A	rea (sf)	CN [Description						
	19,349	30 \	Woods, Good, HSG A						
	19,349	30 1	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, Tc Min				

Summary for Link DP-1: West Wetlands

Inflow Area = 0.569 ac, 3.61% Impervious, Inflow Depth = 3.66" for 100-Year event

Inflow = 1.95 cfs @ 12.09 hrs, Volume= 0.174 af

Primary = 1.95 cfs @ 12.09 hrs, Volume= 0.174 af, Atten= 0%, Lag= 0.0 min

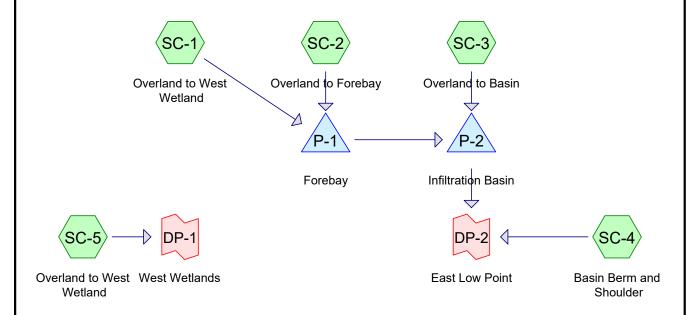
Type III 24-hr 100-Year Rainfall=8.27" Printed 10/25/2023

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 21

Summary for Link DP-2: East Low Point

Inflow Area = 0.444 ac, 0.00% Impervious, Inflow Depth = 0.48" for 100-Year event


Inflow = 0.07 cfs @ 12.40 hrs, Volume= 0.018 af

Primary = 0.07 cfs (a) 12.40 hrs, Volume= 0.018 af, Atten= 0%, Lag= 0.0 min

Appendix C.2 Proposed Conditions

Millis Well 3 Proposed Conditions

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Millis Well 3 Proposed
Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Printed 10/25/2023 Page 2

Rainfall Events Listing

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	1-Year	Type III 24-hr		Default	24.00	1	2.76	2
2	2-Year	Type III 24-hr		Default	24.00	1	3.39	2
3	5-Year	Type III 24-hr		Default	24.00	1	4.42	2
4	10-Year	Type III 24-hr		Default	24.00	1	5.28	2
5	25-Year	Type III 24-hr		Default	24.00	1	6.45	2
6	100-Year	Type III 24-hr		Default	24.00	1	8.27	2

Page 3

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.186	96	Gravel surface, HSG A (SC-1, SC-5)
0.012	98	Impervious, HSG A (SC-5)
0.404	39	Pasture/grassland/range, Good, HSG A (SC-1, SC-2, SC-3, SC-5)
0.183	98	Paved parking, HSG A (SC-1, SC-2)
0.055	98	Water Surface, 0% imp, HSG A (SC-3)
0.173	32	Woods/grass comb., Good, HSG A (SC-4)
1.013	63	TOTAL AREA

Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC Printed 10/25/2023

Page 4

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=1.48"

Tc=6.0 min CN=WQ Runoff=0.12 cfs 0.010 af

SubcatchmentSC-2: Overland to Forebay Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=1.58"

Tc=6.0 min CN=WQ Runoff=0.44 cfs 0.036 af

SubcatchmentSC-3: Overland to Basin Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=0.63"

Tc=6.0 min CN=WQ Runoff=0.14 cfs 0.012 af

SubcatchmentSC-4: Basin Berm and Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.00"

Tc=6.0 min CN=32 Runoff=0.00 cfs 0.000 af

SubcatchmentSC-5: Overland to West Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=1.40"

Tc=6.0 min CN=WQ Runoff=0.41 cfs 0.032 af

Pond P-1: Forebay Peak Elev=123.38' Storage=107 cf Inflow=0.57 cfs 0.045 af

Discarded=0.02 cfs 0.016 af Primary=0.49 cfs 0.029 af Outflow=0.51 cfs 0.045 af

Pond P-2: Infiltration Basin Peak Elev=122.28' Storage=594 cf Inflow=0.62 cfs 0.041 af

Discarded=0.12 cfs 0.041 af Primary=0.00 cfs 0.000 af Outflow=0.12 cfs 0.041 af

Link DP-1: West Wetlands Inflow=0.41 cfs 0.032 af

Primary=0.41 cfs 0.032 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.000 af

Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.089 af Average Runoff Depth = 1.05" 80.76% Pervious = 0.818 ac 19.24% Impervious = 0.195 ac

Page 5

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.12 cfs @ 12.09 hrs, Volume= 0.010 af, Depth= 1.48"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

A	rea (sf)	CN	Description							
	532	98	Paved park	ing, HSG A	A					
	1,256	39	Pasture/gra	ssland/ran	nge, Good, HSG A					
	1,568	96	Gravel surfa	ace, HSG A	Ã					
	3,356		Weighted A	Weighted Average						
	2,824	71	84.15% Per	rvious Area	a					
	532	98	15.85% lmp	pervious Ar	rea					
Т-	ما العرب ما	Class	a Valacity	Conneitre	Description					
Tc	Length	Slop	· · · · · · · · · · · · · · · · · · ·							
(min)	(feet)	(ft/f	/ft) (ft/sec) (cfs)							
6.0					Direct Entry, Tc Min					

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.44 cfs @ 12.09 hrs, Volume= 0.036 af, Depth= 1.58"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

	Area (sf)	CN	Description							
	7,418	98	Paved parking, HSG A							
	4,446	39	Pasture/gra	Pasture/grassland/range, Good, HSG A						
	11,864		Weighted A	Weighted Average						
	4,446	39	37.47% Per	rvious Area	a					
	7,418	98	62.53% Imp	pervious Ar	rea					
To	Longth	Slop	o Volocity	Canacity	Description					
Tc	9	Slope	, - I , - I							
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)						
6.0					Direct Entry, Tc Min					

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.14 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 0.63"

Routed to Pond P-2: Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

Printed 10/25/2023

Page 6

A	rea (sf)	CN	Description						
	2,407	98	Water Surface, 0% imp, HSG A						
	7,188	39	Pasture/gra	Pasture/grassland/range, Good, HSG A					
	9,595		Weighted Average						
	9,595	54	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
6.0	, ,	•	,	, ,	Direct Entry, Tc Min				

Summary for Subcatchment SC-4: Basin Berm and Shoulder

0.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff 0.00 cfs @

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

A	rea (sf)	CN I	Description						
	7,531	32	Woods/grass comb., Good, HSG A						
	7,531	32	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, Tc Min				

Summary for Subcatchment SC-5: Overland to West Wetland

0.41 cfs @ 12.09 hrs, Volume= 0.032 af, Depth= 1.40" Runoff

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 1-Year Rainfall=2.76"

	Area (sf)	CN	Description	Description						
*	540	98	Impervious,	Impervious, HSG A						
	4,724	39	Pasture/gra	Pasture/grassland/range, Good, HSG A						
	6,525	96	Gravel surfa	Gravel surface, HSG A						
	11,789		Weighted A	Weighted Average						
	11,249	72	95.42% Per	vious Area						
	540	98	4.58% Impe	4.58% Impervious Area						
	To longth	Clar	aa Valaaitu	Canacity	Description					
	Tc Length		,	Capacity	Description					
((min) (feet)	(ft/	ft) (ft/sec)	(cfs)						
	6.0				Direct Entry, Tc Min					

Direct Entry, Tc Min

Page 7

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 1.56" for 1-Year event

Inflow = 0.57 cfs @ 12.09 hrs, Volume= 0.045 af

Outflow = 0.51 cfs @ 12.13 hrs, Volume= 0.045 af, Atten= 10%, Lag= 2.4 min

Discarded = 0.02 cfs @ 12.13 hrs, Volume= 0.016 af Primary = 0.49 cfs @ 12.13 hrs, Volume= 0.029 af

Routed to Pond P-2: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.38' @ 12.13 hrs Surf.Area= 399 sf Storage= 107 cf

Plug-Flow detention time= 5.1 min calculated for 0.045 af (100% of inflow)

Center-of-Mass det. time= 5.1 min (767.5 - 762.5)

Volume	Inv	ert Avail.Sto	orage Storage	e Description	
#1	123.0	00' 4	72 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
123.0	00	165	0	0	
124.0	00	779	472	472	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	123.00'	12.0" Roun	d Culvert	
	•		Inlet / Outlet	Invert= 123.00' /	nform to fill, Ke= 0.700 122.50' S= 0.0072 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf
#2	Discarde	ed 123.00'	2.410 in/hr E	Exfiltration over	Surface area

Discarded OutFlow Max=0.02 cfs @ 12.13 hrs HW=123.38' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.48 cfs @ 12.13 hrs HW=123.38' TW=122.15' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.48 cfs @ 2.62 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area = 0.570 ac, 32.04% Impervious, Inflow Depth = 0.86" for 1-Year event

Inflow = 0.62 cfs @ 12.11 hrs, Volume= 0.041 af

Outflow = 0.12 cfs @ 12.57 hrs, Volume= 0.041 af, Atten= 80%, Lag= 27.1 min

Discarded = 0.12 cfs @ 12.57 hrs, Volume= 0.041 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Link DP-2: East Low Point

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.28' @ 12.57 hrs Surf.Area= 2,235 sf Storage= 594 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 32.6 min (777.7 - 745.2)

Millis Well 3 Proposed

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 8

Volume	Invert	Avail.Sto	rage Stora	Storage Description			
#1	122.00	5,93	37 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio		urf.Area (sq-ft)	Inc.Store				
122.0	0	1,944	(0			
124.0	0	3,993	5,937	5,937			
Device	Routing	Invert	Outlet Dev	vices			
#1	Primary	123.99'	15.0' long	Sharp-Crested R	ectangular Weir 2 End Contraction(s)		
		2.410 in/h	10 in/hr Exfiltration over Surface area				

Discarded OutFlow Max=0.12 cfs @ 12.57 hrs HW=122.28' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area = 0.271 ac, 4.58% Impervious, Inflow Depth = 1.40" for 1-Year event

Inflow = 0.41 cfs @ 12.09 hrs, Volume= 0.032 af

Primary = 0.41 cfs @ 12.09 hrs, Volume= 0.032 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area = 0.743 ac, 24.58% Impervious, Inflow Depth = 0.00" for 1-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Prepared by Kleinfelder

Type III 24-hr 2-Year Rainfall=3.39"

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 9

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=1.87"

Tc=6.0 min CN=WQ Runoff=0.15 cfs 0.012 af

SubcatchmentSC-2: Overland to Forebay Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=1.98"

Tc=6.0 min CN=WQ Runoff=0.55 cfs 0.045 af

SubcatchmentSC-3: Overland to Basin Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=0.80"

Tc=6.0 min CN=WQ Runoff=0.18 cfs 0.015 af

SubcatchmentSC-4: Basin Berm and Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.00"

Tc=6.0 min CN=32 Runoff=0.00 cfs 0.000 af

SubcatchmentSC-5: Overland to West Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=1.77"

Tc=6.0 min CN=WQ Runoff=0.51 cfs 0.040 af

Pond P-1: Forebay Peak Elev=123.43' Storage=127 cf Inflow=0.70 cfs 0.057 af

Discarded=0.02 cfs 0.018 af Primary=0.61 cfs 0.039 af Outflow=0.63 cfs 0.057 af

Pond P-2: Infiltration Basin Peak Elev=122.39' Storage=829 cf Inflow=0.78 cfs 0.054 af

Discarded=0.13 cfs 0.054 af Primary=0.00 cfs 0.000 af Outflow=0.13 cfs 0.054 af

Link DP-1: West Wetlands Inflow=0.51 cfs 0.040 af

Primary=0.51 cfs 0.040 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.000 af

Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.111 af Average Runoff Depth = 1.32" 80.76% Pervious = 0.818 ac 19.24% Impervious = 0.195 ac

Page 10

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.15 cfs @ 12.09 hrs, Volume= 0.012 af, Depth= 1.87"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

A	rea (sf)	CN	Description					
	532	98	Paved park	ing, HSG A	A			
	1,256	39	Pasture/gra	ssland/ran	ige, Good, HSG A			
	1,568	96	Gravel surfa	ace, HSG A	Ä			
	3,356		Weighted A	Weighted Average				
	2,824	71	84.15% Pervious Area					
	532	98	15.85% Impervious Area					
Tc	Length	Slop	,	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
6.0					Direct Entry, Tc Min			

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 0.045 af, Depth= 1.98"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

Area (sf)	CN	Description					
7,418	98	Paved parki	ng, HSG A	1			
4,446	39	Pasture/gras	ssland/rang	ge, Good, HSG A			
11,864		Weighted Average					
4,446	39	37.47% Per	vious Area				
7,418	98	62.53% Imp	62.53% Impervious Area				
Tc Length (min) (feet)	Slop (ft/	,	Capacity (cfs)	Description			
6.0				Direct Entry. Tc Min			

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.18 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 0.80"

Routed to Pond P-2: Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

Printed 10/25/2023

Page 11

A	rea (sf)	CN	Description				
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A		
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	9,595		Weighted Average				
	9,595	54	100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
6.0	, ,	•	,	, ,	Direct Entry, Tc Min		

Summary for Subcatchment SC-4: Basin Berm and Shoulder

0.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff 0.00 cfs @

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

	Area (sf)	CN I	Description					
	7,531	32 \	Woods/grass comb., Good, HSG A					
	7,531	32	100.00% Pervious Area					
To (min	c Length) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0	0				Direct Entry, Tc Min			

Summary for Subcatchment SC-5: Overland to West Wetland

0.51 cfs @ 12.09 hrs, Volume= 0.040 af, Depth= 1.77" Runoff

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.39"

	Area (sf)	CN	Description						
*	540	98	Impervious,	HSG A					
	4,724	39	Pasture/gra	Pasture/grassland/range, Good, HSG A					
	6,525	96	Gravel surfa	Gravel surface, HSG A					
	11,789		Weighted A	Weighted Average					
	11,249	72	95.42% Per	vious Area					
	540	98	4.58% Impe	4.58% Impervious Area					
	-	01		.					
	Tc Length		,	Capacity	Description				
((min) (feet)	(ft/	ft) (ft/sec)	(cfs)					
	6.0				Direct Entry, Tc Min				

Direct Entry, Tc Min

Page 12

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 1.95" for 2-Year event

Inflow = 0.70 cfs @ 12.09 hrs, Volume= 0.057 af

Outflow = 0.63 cfs @ 12.13 hrs, Volume= 0.057 af, Atten= 10%, Lag= 2.3 min

Discarded = 0.02 cfs @ 12.13 hrs, Volume= 0.018 af Primary = 0.61 cfs @ 12.13 hrs, Volume= 0.039 af

Routed to Pond P-2: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.43' @ 12.13 hrs Surf.Area= 428 sf Storage= 127 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 5.1 min (763.5 - 758.3)

Volume	Inve	ert Avail.Sto	orage Storag	e Description	
#1	123.0	00' 4	72 cf Custo	m Stage Data (Pri	smatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
123.0	00	165	0	0	
124.0	00	779	472	472	
Device	Routing	Invert	Outlet Device	ces	
#1	Primary	123.00'	12.0" Rour	nd Culvert	
	•		L= 69.0' CI	PP, mitered to conf	form to fill, Ke= 0.700
			Inlet / Outlet	Invert= 123.00' / 1	22.50' S= 0.0072 '/' Cc= 0.900
			n= 0.013 C	orrugated PE, smo	oth interior, Flow Area= 0.79 sf
#2	Discarde	ed 123.00'	2.410 in/hr	Exfiltration over S	Surface area

Discarded OutFlow Max=0.02 cfs @ 12.13 hrs HW=123.42' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.60 cfs @ 12.13 hrs HW=123.42' TW=122.20' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.60 cfs @ 2.77 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area = 0.570 ac, 32.04% Impervious, Inflow Depth = 1.13" for 2-Year event

Inflow = 0.78 cfs @ 12.11 hrs, Volume= 0.054 af

Outflow = 0.13 cfs @ 12.61 hrs, Volume= 0.054 af, Atten= 83%, Lag= 29.8 min

Discarded = 0.13 cfs @ 12.61 hrs, Volume= 0.054 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Link DP-2: East Low Point

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.39' @ 12.61 hrs Surf.Area= 2,340 sf Storage= 829 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 45.2 min (790.0 - 744.8)

Millis Well 3 Proposed

Prepared by Kleinfelder

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 13

Volume	Invert	Avail.Sto	rage Storage	ge Description	
#1	122.00'	5,93	37 cf Custo	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
122.0	0	1,944	0	0	
124.0	0	3,993	5,937	5,937	
Device	Routing	Invert	Outlet Devic	ces	
#1	Primary	123.99'	15.0' long S	Sharp-Crested Rectangular Weir 2 End Contraction(s)	_
#2	•		2.410 in/hr l	Exfiltration over Surface area	

Discarded OutFlow Max=0.13 cfs @ 12.61 hrs HW=122.39' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area = 0.271 ac, 4.58% Impervious, Inflow Depth = 1.77" for 2-Year event

Inflow = 0.51 cfs @ 12.09 hrs, Volume= 0.040 af

Primary = 0.51 cfs @ 12.09 hrs, Volume= 0.040 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area = 0.743 ac, 24.58% Impervious, Inflow Depth = 0.00" for 2-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 14

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=2.55"

Tc=6.0 min CN=WQ Runoff=0.20 cfs 0.016 af

SubcatchmentSC-2: Overland to Forebay Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=2.65"

Tc=6.0 min CN=WQ Runoff=0.72 cfs 0.060 af

SubcatchmentSC-3: Overland to Basin Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=1.12"

Tc=6.0 min CN=WQ Runoff=0.23 cfs 0.021 af

SubcatchmentSC-4: Basin Berm and Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.00"

Tc=6.0 min CN=32 Runoff=0.00 cfs 0.000 af

SubcatchmentSC-5: Overland to West Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=2.42"

Tc=6.0 min CN=WQ Runoff=0.67 cfs 0.055 af

Pond P-1: Forebay Peak Elev=123.50' Storage=160 cf Inflow=0.92 cfs 0.077 af

Discarded=0.03 cfs 0.020 af Primary=0.81 cfs 0.056 af Outflow=0.83 cfs 0.077 af

Pond P-2: Infiltration Basin Peak Elev=122.55' Storage=1,229 cf Inflow=1.03 cfs 0.077 af

Discarded=0.14 cfs 0.077 af Primary=0.00 cfs 0.000 af Outflow=0.14 cfs 0.077 af

Link DP-1: West Wetlands Inflow=0.67 cfs 0.055 af

Primary=0.67 cfs 0.055 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.000 af

Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.152 af Average Runoff Depth = 1.80" 80.76% Pervious = 0.818 ac 19.24% Impervious = 0.195 ac

Printed 10/25/2023 Page 15

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.20 cfs @ 12.09 hrs, Volume= 0.016 af, Depth= 2.55"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

A	rea (sf)	CN	Description					
	532	98	Paved park	ing, HSG A	A			
	1,256	39	Pasture/gra	ssland/ran	ige, Good, HSG A			
	1,568	96	Gravel surfa	ace, HSG A	Ä			
	3,356		Weighted A	Weighted Average				
	2,824	71	84.15% Pervious Area					
	532	98	15.85% Impervious Area					
Tc	Length	Slop	,	Capacity	Description			
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)				
6.0					Direct Entry, Tc Min			

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.72 cfs @ 12.09 hrs, Volume= 0.060 af, Depth= 2.65"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

	Area (sf)	CN	Description				
	7,418	98	Paved park	ing, HSG A	4		
	4,446	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	11,864		Weighted Average				
	4,446	39	37.47% Per	vious Area	a a constant of the constant o		
	7,418	98	62.53% Impervious Area				
-	Γc Length	Slop	e Velocity	Capacity	Description		
(mi	n) (feet)	(ft/ft	t) (ft/sec)	(cfs)	·		
6	.0			·	Direct Entry. Tc Min		

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.23 cfs @ 12.09 hrs, Volume= 0.021 af, Depth= 1.12"

Routed to Pond P-2: Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 16

A	rea (sf)	CN	Description					
	2,407	98	Water Surface, 0% imp, HSG A					
	7,188	39	Pasture/grassland/range, Good, HSG A					
	9,595		Weighted Average					
	9,595	54	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description			
6.0					Direct Entry, Tc Min			

Summary for Subcatchment SC-4: Basin Berm and Shoulder

0.00 cfs @ 24.00 hrs, Volume= 0.000 af, Depth= 0.00" Runoff

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

A	rea (sf)	CN I	Description						
	7,531	32	Woods/grass comb., Good, HSG A						
	7,531	32	100.00% Pervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.0					Direct Entry, Tc Min				

Summary for Subcatchment SC-5: Overland to West Wetland

0.67 cfs @ 12.09 hrs, Volume= 0.055 af, Depth= 2.42" Runoff

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 5-Year Rainfall=4.42"

	Area (sf) CN	Description						
*	540	98	Impervious	HSG A					
	4,724	4 39	Pasture/gra	ssland/ran	nge, Good, HSG A				
	6,525	5 96	Gravel surfa	Gravel surface, HSG A					
	11,789	9	Weighted Average						
	11,249	72	95.42% Pei	95.42% Pervious Area					
	540	98	4.58% Impe	ervious Are	ea				
	Tc Leng		,	Capacity	Description				
(m	nin) (fee	et) (ft/	ft) (ft/sec)	(cfs)					
	6.0				Direct Entry, Tc Min				

Direct Entry, Tc Min

Page 17

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 2.63" for 5-Year event

Inflow = 0.92 cfs @ 12.09 hrs, Volume= 0.077 af

Outflow = 0.83 cfs @ 12.12 hrs, Volume= 0.077 af, Atten= 9%, Lag= 2.3 min

Discarded = 0.03 cfs @ 12.12 hrs, Volume= 0.020 af Primary = 0.81 cfs @ 12.12 hrs, Volume= 0.056 af

Routed to Pond P-2: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.50' @ 12.12 hrs Surf.Area= 473 sf Storage= 160 cf

Plug-Flow detention time= 5.3 min calculated for 0.077 af (100% of inflow)

Center-of-Mass det. time= 5.3 min (762.2 - 756.9)

Volume	Inve	ert Avail.Sto	orage Storag	e Description	
#1	123.0	00' 4	72 cf Custo	m Stage Data (Pri	smatic)Listed below (Recalc)
Elevation (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
123.0	00	165	0	0	
124.0	00	779	472	472	
Device	Routing	Invert	Outlet Device	ces	
#1	Primary	123.00'	12.0" Rour	nd Culvert	
	•		L= 69.0' CI	PP, mitered to conf	form to fill, Ke= 0.700
			Inlet / Outlet	Invert= 123.00' / 1	22.50' S= 0.0072 '/' Cc= 0.900
			n= 0.013 C	orrugated PE, smo	oth interior, Flow Area= 0.79 sf
#2	Discarde	ed 123.00'	2.410 in/hr	Exfiltration over S	Surface area

Discarded OutFlow Max=0.03 cfs @ 12.12 hrs HW=123.49' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.79 cfs @ 12.12 hrs HW=123.49' TW=122.30' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.79 cfs @ 2.97 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area = 0.570 ac, 32.04% Impervious, Inflow Depth = 1.62" for 5-Year event

Inflow = 1.03 cfs @ 12.11 hrs, Volume= 0.077 af

Outflow = 0.14 cfs @ 12.68 hrs, Volume= 0.077 af, Atten= 86%, Lag= 33.8 min

Discarded = 0.14 cfs @ 12.68 hrs, Volume = 0.077 afPrimary = 0.00 cfs @ 0.00 hrs, Volume = 0.000 af

Routed to Link DP-2: East Low Point

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.55' @ 12.68 hrs Surf.Area= 2,510 sf Storage= 1,229 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 65.4 min (819.0 - 753.6)

Type III 24-hr 5-Year Rainfall=4.42"

Millis Well 3 Proposed

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 18

Volume	Invert	Avail.Sto	rage Stor	age Description	
#1	122.00'	5,93	37 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee		urf.Area (sq-ft)	Inc.Stor		
122.0	0	1,944		0 0	
124.0	0	3,993	5,93	7 5,937	
Device	Routing	Invert	Outlet De	evices	
#1	Primary	123.99'	15.0' long	g Sharp-Crested R	ectangular Weir 2 End Contraction(s)
#2	Discarded	122.00'	2.410 in/l	hr Exfiltration over	Surface area

Discarded OutFlow Max=0.14 cfs @ 12.68 hrs HW=122.55' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.14 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area = 0.271 ac, 4.58% Impervious, Inflow Depth = 2.42" for 5-Year event

Inflow = 0.67 cfs @ 12.09 hrs, Volume= 0.055 af

Primary = 0.67 cfs @ 12.09 hrs, Volume= 0.055 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area = 0.743 ac, 24.58% Impervious, Inflow Depth = 0.00" for 5-Year event

Inflow = 0.00 cfs @ 24.00 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 24.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Millis Well 3 Proposed

Type III 24-hr 10-Year Rainfall=5.28"

Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC Printed 10/25/2023

Page 19

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q

SubcatchmentSC-1: Overland to West Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=3.14"

Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Tc=6.0 min CN=WQ Runoff=0.24 cfs 0.020 af

SubcatchmentSC-2: Overland to Forebay Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=3.25"

Tc=6.0 min CN=WQ Runoff=0.86 cfs 0.074 af

SubcatchmentSC-3: Overland to Basin Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=1.46"

Tc=6.0 min CN=WQ Runoff=0.28 cfs 0.027 af

SubcatchmentSC-4: Basin Berm and Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.05"

Tc=6.0 min CN=32 Runoff=0.00 cfs 0.001 af

SubcatchmentSC-5: Overland to West Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=3.00"

Tc=6.0 min CN=WQ Runoff=0.81 cfs 0.068 af

Pond P-1: Forebay Peak Elev=123.56' Storage=188 cf Inflow=1.10 cfs 0.094 af

Discarded=0.03 cfs 0.022 af Primary=0.97 cfs 0.072 af Outflow=1.00 cfs 0.094 af

Pond P-2: Infiltration Basin Peak Elev=122.70' Storage=1,612 cf Inflow=1.23 cfs 0.099 af

Discarded=0.15 cfs 0.099 af Primary=0.00 cfs 0.000 af Outflow=0.15 cfs 0.099 af

Link DP-1: West Wetlands Inflow=0.81 cfs 0.068 af

Primary=0.81 cfs 0.068 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.001 af

Primary=0.00 cfs 0.001 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.189 af Average Runoff Depth = 2.24" 80.76% Pervious = 0.818 ac 19.24% Impervious = 0.195 ac

Page 20

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.24 cfs @ 12.09 hrs, Volume= 0.020 af, Depth= 3.14"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

A	rea (sf)	CN	Description				
	532	98	Paved park	ing, HSG A	A		
	1,256	39	Pasture/gra	ssland/ran	ige, Good, HSG A		
	1,568	96	Gravel surfa	ace, HSG A	Ä		
	3,356		Weighted Average				
	2,824	71	84.15% Pervious Area				
	532	98	15.85% Impervious Area				
Tc	Length	Slop	,	Capacity	Description		
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 0.86 cfs @ 12.09 hrs, Volume= 0.074 af, Depth= 3.25"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

A	rea (sf)	CN	Description					
	7,418	98	Paved park	ing, HSG A	1			
	4,446	39	Pasture/gra	ssland/ran	ge, Good, HSG A			
	11,864		Weighted Average					
	4,446	39	39 37.47% Pervious Area					
	7,418	98	98 62.53% Impervious Area					
Тс	Length	Slop	,	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry, Tc Min			

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.28 cfs @ 12.09 hrs, Volume= 0.027 af, Depth= 1.46"

Routed to Pond P-2: Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

Millis Well 3 Proposed

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f	s/n 00759 © :	2022 HydroCAD) Software Solutions LLC

Page 21

A	rea (sf)	CN	Description				
	2,407	98	Water Surfa	ace, 0% imp	p, HSG A		
	7,188	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	9,595		Weighted Average				
	9,595	54	100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.00 cfs @ 16.79 hrs, Volume= 0.00

0.001 af, Depth= 0.05"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

	Area (sf)	CN I	Description					
	7,531	32 \	Woods/grass comb., Good, HSG A					
	7,531	32	100.00% Pervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry, Tc Min			

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 0.81 cfs @ 12.09 hrs, Volume= 0.068 af, Depth= 3.00"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.28"

	Area (sf)	CN	Description					
*	540	98	Impervious, HSG A					
	4,724	39	Pasture/grassland/range, Good, HSG A					
	6,525	96	Gravel surface, HSG A					
	11,789		Weighted Average					
	11,249	72	95.42% Pervious Area					
	540	98	4.58% Impervious Area					
	Tc Length	Slo						
_	(min) (feet)	(ft/	ft) (ft/sec) (cfs)					

Direct Entry, Tc Min

Printed 10/25/2023 Page 22

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 3.23" for 10-Year event

Inflow = 1.10 cfs @ 12.09 hrs, Volume= 0.094 af

Outflow = 1.00 cfs @ 12.12 hrs, Volume= 0.094 af, Atten= 9%, Lag= 2.3 min

Discarded = 0.03 cfs @ 12.12 hrs, Volume= 0.022 af Primary = 0.97 cfs @ 12.12 hrs, Volume= 0.072 af

Routed to Pond P-2: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.56' @ 12.12 hrs Surf.Area= 508 sf Storage= 188 cf

Plug-Flow detention time= 5.3 min calculated for 0.094 af (100% of inflow)

Center-of-Mass det. time= 5.4 min (762.1 - 756.7)

Volume	Inve	ert Avail.St	orage Storage	e Description	
#1	123.0)0'	72 cf Custor	n Stage Data (Pris	smatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
123.0	00	165	0	0	
124.0	00	779	472	472	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	123.00'	12.0" Roun	d Culvert	
	-		L= 69.0' CF	PP, mitered to confo	orm to fill, Ke= 0.700
			Inlet / Outlet	Invert= 123.00' / 12	22.50' S= 0.0072 '/' Cc= 0.900
			n= 0.013 Cc	orrugated PE, smoo	oth interior, Flow Area= 0.79 sf
#2	Discarde	ed 123.00'	2.410 in/hr E	Exfiltration over S	urface area

Discarded OutFlow Max=0.03 cfs @ 12.12 hrs HW=123.55' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.95 cfs @ 12.12 hrs HW=123.55' TW=122.38' (Dynamic Tailwater) 1=Culvert (Barrel Controls 0.95 cfs @ 3.10 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area = 0.570 ac, 32.04% Impervious, Inflow Depth = 2.09" for 10-Year event

Inflow = 1.23 cfs @ 12.11 hrs, Volume= 0.099 af

Outflow = 0.15 cfs @ 12.81 hrs, Volume= 0.099 af, Atten= 88%, Lag= 41.9 min

Discarded = 0.15 cfs @ 12.81 hrs, Volume= 0.099 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Link DP-2: East Low Point

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.70' @ 12.81 hrs Surf.Area= 2,661 sf Storage= 1,612 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 85.2 min (845.4 - 760.2)

Type III 24-hr 10-Year Rainfall=5.28"

Millis Well 3 Proposed

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 23

Volume	Invert	Avail.Sto	rage Storag	ge Description	
#1	122.00'	5,93	37 cf Custo	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
122.0	0	1,944	0	0	
124.00		3,993	5,937	5,937	
Device	Routing	Invert	Outlet Device	ces	
#1	Primary	123.99'	15.0' long S	Sharp-Crested Rectangular Weir 2 End Contraction(s)	_
#2	Discarded	122.00'	2.410 in/hr	Exfiltration over Surface area	

Discarded OutFlow Max=0.15 cfs @ 12.81 hrs HW=122.70' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.15 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area = 0.271 ac, 4.58% Impervious, Inflow Depth = 3.00" for 10-Year event

Inflow = 0.81 cfs @ 12.09 hrs, Volume= 0.068 af

Primary = 0.81 cfs @ 12.09 hrs, Volume= 0.068 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area = 0.743 ac, 24.58% Impervious, Inflow Depth = 0.01" for 10-Year event

Inflow = 0.00 cfs @ 16.79 hrs, Volume= 0.001 af

Primary = 0.00 cfs @ 16.79 hrs, Volume= 0.001 af, Atten= 0%, Lag= 0.0 min

Millis Well 3 Proposed

Type III 24-hr 25-Year Rainfall=6.45"

Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC Printed 10/25/2023

Page 24

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=3.99"

Tc=6.0 min CN=WQ Runoff=0.30 cfs 0.026 af

SubcatchmentSC-2: Overland to Forebay Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=4.10"

Tc=6.0 min CN=WQ Runoff=1.06 cfs 0.093 af

SubcatchmentSC-3: Overland to Basin Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=1.99"

Tc=6.0 min CN=WQ Runoff=0.36 cfs 0.037 af

SubcatchmentSC-4: Basin Berm and Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.21"

Tc=6.0 min CN=32 Runoff=0.00 cfs 0.003 af

SubcatchmentSC-5: Overland to West Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=3.83"

Tc=6.0 min CN=WQ Runoff=1.01 cfs 0.086 af

Pond P-1: Forebay Peak Elev=123.63' Storage=227 cf Inflow=1.36 cfs 0.119 af

Discarded=0.03 cfs 0.023 af Primary=1.20 cfs 0.095 af Outflow=1.23 cfs 0.119 af

Pond P-2: Infiltration Basin Peak Elev=122.93' Storage=2,241 cf Inflow=1.55 cfs 0.132 af

Discarded=0.16 cfs 0.132 af Primary=0.00 cfs 0.000 af Outflow=0.16 cfs 0.132 af

Link DP-1: West Wetlands Inflow=1.01 cfs 0.086 af

Primary=1.01 cfs 0.086 af

Link DP-2: East Low Point Inflow=0.00 cfs 0.003 af

Primary=0.00 cfs 0.003 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.245 af Average Runoff Depth = 2.90" 80.76% Pervious = 0.818 ac 19.24% Impervious = 0.195 ac

Printed 10/25/2023

Page 25

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.30 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 3.99"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

A	rea (sf)	CN	Description				
	532	98	98 Paved parking, HSG A				
	1,256	39	Pasture/grassland/range, Good, HSG A				
	1,568	96	Gravel surfa	ace, HSG A	Ā		
	3,356		Weighted A	verage			
	2,824	71 84.15% Pervious Area					
	532	98	15.85% lmp	ervious Ar	rea		
т.	1	01		0	D		
Tc	Length	Slop	,	Capacity	Description		
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 1.06 cfs @ 12.09 hrs, Volume= 0.093 af, Depth= 4.10"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

/	Area (sf)	CN	Description					
	7,418	98	98 Paved parking, HSG A					
	4,446	39	•					
	11,864		Weighted A	verage				
	4,446	39	39 37.47% Pervious Area					
	7,418	98	62.53% Imp	pervious Ar	rea			
To	Longth	Slop	o Volocity	Canacity	Description			
To	9	Slope	,	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)				
6.0					Direct Entry, Tc Min			

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.36 cfs @ 12.10 hrs, Volume= 0.037 af, Depth= 1.99"

Routed to Pond P-2: Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

Millis Well 3 Proposed

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 26

	Area (sf)	CN	Description				
	2,407	98	Water Surface, 0% imp, HSG A				
	7,188	39	Pasture/grassland/range, Good, HSG A				
	9,595		Weighted A	verage			
	9,595	54	100.00% Pervious Area				
To (min	9	Slop (ft/ft	,	Capacity (cfs)	Description		
6.0)	•			Direct Entry, Tc Min		

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff = 0.00 cfs @ 13.72 hrs, Volume= 0.0

0.003 af, Depth= 0.21"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

_	A	rea (sf)	CN	Description				
		7,531	32	32 Woods/grass comb., Good, HSG A				
		7,531	32	100.00% Pe	ervious Are	ea		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-5: Overland to West Wetland

Runoff = 1.01 cfs @ 12.09 hrs, Volume= 0.086 af, Depth= 3.83"

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=6.45"

	Area (sf)	CN	Description				
*	540	98	Impervious, HSG A				
	4,724	39	Pasture/grassland/range, Good, HSG A				
	6,525	96	Gravel surface, HSG A				
	11,789		Weighted Average				
	11,249	72	2 95.42% Pervious Area				
	540	98	4.58% Impervious Area				
	Tc Length	Slop					
_	(min) (feet)	(ft/	ft) (ft/sec) (cfs)				
_	540	98	4.58% Impervious Area pe Velocity Capacity Description				

Direct Entry, Tc Min

6.0

Printed 10/25/2023 Page 27

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 4.08" for 25-Year event

Inflow = 1.36 cfs @ 12.09 hrs, Volume= 0.119 af

Outflow = 1.23 cfs @ 12.13 hrs, Volume= 0.119 af, Atten= 10%, Lag= 2.4 min

Discarded = 0.03 cfs @ 12.13 hrs, Volume= 0.023 af Primary = 1.20 cfs @ 12.13 hrs, Volume= 0.095 af

Routed to Pond P-2: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.63' @ 12.13 hrs Surf.Area= 553 sf Storage= 227 cf

Plug-Flow detention time= 5.4 min calculated for 0.119 af (100% of inflow)

Center-of-Mass det. time= 5.5 min (762.2 - 756.7)

Volume	Inve	ert Avail.Sto	orage Storage I	Description	
#1	123.0	00' 4	72 cf Custom	Stage Data (Pri	ismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
123.0	00	165	0	0	
124.0	00	779	472	472	
Device	Routing	Invert	Outlet Devices	3	
#1	Primary	123.00'	12.0" Round	Culvert	
			L= 69.0' CPP	, mitered to con	form to fill, Ke= 0.700
			Inlet / Outlet In	nvert= 123.00' / 1	122.50' S= 0.0072 '/' Cc= 0.900
			n= 0.013 Corr	rugated PE, smo	oth interior, Flow Area= 0.79 sf
#2	Discarde	ed 123.00'	2.410 in/hr Ex	filtration over S	Surface area

Discarded OutFlow Max=0.03 cfs @ 12.13 hrs HW=123.62' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=1.17 cfs @ 12.13 hrs HW=123.62' TW=122.51' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.17 cfs @ 3.25 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area = 0.570 ac, 32.04% Impervious, Inflow Depth = 2.78" for 25-Year event

Inflow = 1.55 cfs @ 12.12 hrs, Volume= 0.132 af

Outflow = 0.16 cfs (a) 13.02 hrs, Volume= 0.132 af, Atten= 90%, Lag= 54.2 min

Discarded = 0.16 cfs @ 13.02 hrs, Volume= 0.132 af Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routed to Link DP-2: East Low Point

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 122.93' @ 13.02 hrs Surf.Area= 2,893 sf Storage= 2,241 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 117.0 min (882.8 - 765.8)

Type III 24-hr 25-Year Rainfall=6.45"

Millis Well 3 Proposed

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 28

Volume	Invert	Avail.Sto	rage Storaç	ge Description	
#1	122.00'	5,93	37 cf Custo	om Stage Data (Prismatic)Listed below (Recalc)	
Elevatio		urf.Area (sq-ft)	Inc.Store (cubic-feet)	G G	
122.0	0	1,944	0	0	
124.0	0	3,993	5,937	5,937	
Device	Routing	Invert	Outlet Devi	ices	
#1	Primary	123.99'	15.0' long	Sharp-Crested Rectangular Weir 2 End Contraction(s)	_
#2	Discarded	122.00'	2.410 in/hr	r Exfiltration over Surface area	

Discarded OutFlow Max=0.16 cfs @ 13.02 hrs HW=122.93' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.16 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area = 0.271 ac, 4.58% Impervious, Inflow Depth = 3.83" for 25-Year event Inflow = 1.01 cfs @ 12.09 hrs, Volume= 0.086 af

Primary = 1.01 cfs @ 12.09 hrs, Volume= 0.086 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area = 0.743 ac, 24.58% Impervious, Inflow Depth = 0.05" for 25-Year event

Inflow = 0.00 cfs @ 13.72 hrs, Volume= 0.003 af

Primary = 0.00 cfs @ 13.72 hrs, Volume= 0.003 af, Atten= 0%, Lag= 0.0 min

Millis Well 3 Proposed

Type III 24-hr 100-Year Rainfall=8.27"

Prepared by Kleinfelder HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC Printed 10/25/2023

Page 29

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentSC-1: Overland to West Runoff Area=3,356 sf 15.85% Impervious Runoff Depth=5.39"

Tc=6.0 min CN=WQ Runoff=0.41 cfs 0.035 af

SubcatchmentSC-2: Overland to Forebay Runoff Area=11,864 sf 62.53% Impervious Runoff Depth=5.50"

Tc=6.0 min CN=WQ Runoff=1.45 cfs 0.125 af

SubcatchmentSC-3: Overland to Basin Runoff Area=9,595 sf 0.00% Impervious Runoff Depth=2.97"

Tc=6.0 min CN=WQ Runoff=0.60 cfs 0.054 af

SubcatchmentSC-4: Basin Berm and Runoff Area=7,531 sf 0.00% Impervious Runoff Depth=0.64"

Tc=6.0 min CN=32 Runoff=0.05 cfs 0.009 af

SubcatchmentSC-5: Overland to West Runoff Area=11,789 sf 4.58% Impervious Runoff Depth=5.19"

Tc=6.0 min CN=WQ Runoff=1.38 cfs 0.117 af

Pond P-1: Forebay Peak Elev=123.76' Storage=304 cf Inflow=1.85 cfs 0.159 af

Discarded=0.04 cfs 0.027 af Primary=1.62 cfs 0.133 af Outflow=1.66 cfs 0.159 af

Pond P-2: Infiltration Basin Peak Elev=123.31' Storage=3,415 cf Inflow=2.19 cfs 0.187 af

Discarded=0.18 cfs 0.187 af Primary=0.00 cfs 0.000 af Outflow=0.18 cfs 0.187 af

Link DP-1: West Wetlands Inflow=1.38 cfs 0.117 af

Primary=1.38 cfs 0.117 af

Link DP-2: East Low Point Inflow=0.05 cfs 0.009 af

Primary=0.05 cfs 0.009 af

Total Runoff Area = 1.013 ac Runoff Volume = 0.340 af Average Runoff Depth = 4.03" 80.76% Pervious = 0.818 ac 19.24% Impervious = 0.195 ac HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 30

Summary for Subcatchment SC-1: Overland to West Wetland

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.035 af, Depth= 5.39"

Routed to Pond P-1 : Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

A	rea (sf)	CN	Description				
	532	98	Paved park	ing, HSG A	4		
	1,256	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	1,568	96	Gravel surfa	ace, HSG A	Ā		
	3,356		Weighted Average				
	2,824	71	84.15% Per	vious Area	a a constant of the constant o		
	532	98	15.85% Impervious Area				
т.	1	01		0	D		
Tc	Length	Slop	,	Capacity	Description		
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-2: Overland to Forebay

Runoff = 1.45 cfs @ 12.09 hrs, Volume= 0.125 af, Depth= 5.50"

Routed to Pond P-1: Forebay

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

Ar	rea (sf)	CN	Description				
	7,418	98	Paved park	ing, HSG A	1		
	4,446	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	11,864		Weighted Average				
	4,446	39	37.47% Per	vious Area			
	7,418	98	98 62.53% Impervious Area				
Тс	Length	Slop	,	Capacity	Description		
<u>(min)</u>	(feet)	(ft/f	(ft/sec)	(cfs)			
6.0					Direct Entry, Tc Min		

Summary for Subcatchment SC-3: Overland to Basin

Runoff = 0.60 cfs @ 12.10 hrs, Volume= 0.054 af, Depth= 2.97"

Routed to Pond P-2: Infiltration Basin

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 31

	Area (sf)	CN	Description				
	2,407	98	Water Surfa	Water Surface, 0% imp, HSG A			
	7,188	39	Pasture/gra	Pasture/grassland/range, Good, HSG A			
	9,595		Weighted Average				
	9,595	54	100.00% Pervious Area				
T (min	c Length	Slop (ft/ft	,	Capacity (cfs)	Description		
6.		(1011	., (.3000)	(0.0)	Direct Entry, Tc Min		

Summary for Subcatchment SC-4: Basin Berm and Shoulder

Runoff 0.05 cfs @ 12.34 hrs, Volume=

0.009 af, Depth= 0.64"

Routed to Link DP-2: East Low Point

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

	Area (sf)	CN I	Description					
	7,531	32 \	Woods/grass comb., Good, HSG A					
	7,531	32	100.00% Pervious Area					
To (min_	c Length) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0	0				Direct Entry, Tc Min			

Summary for Subcatchment SC-5: Overland to West Wetland

1.38 cfs @ 12.09 hrs, Volume= 0.117 af, Depth= 5.19" Runoff

Routed to Link DP-1: West Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.27"

	Area (sf)	CN	Description				
*	540	98	Impervious,	HSG A			
	4,724	39	Pasture/gra	ssland/ran	ge, Good, HSG A		
	6,525	96	Gravel surfa	Gravel surface, HSG A			
	11,789		Weighted A	verage			
	11,249	72	95.42% Pervious Area				
	540	98	4.58% Impe	а			
	Tc Length	Slor	oe Velocity	Capacity	Description		
1	min) (feet)	(ft/	,	(cfs)	Description		
		(IV	it) (il/Sec)	(CIS)			
	6.0				Direct Entry, Tc Min		

Direct Entry, Tc Min

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 32

Summary for Pond P-1: Forebay

Inflow Area = 0.349 ac, 52.23% Impervious, Inflow Depth = 5.47" for 100-Year event

Inflow = 1.85 cfs @ 12.09 hrs, Volume= 0.159 af

Outflow = 1.66 cfs @ 12.13 hrs, Volume= 0.159 af, Atten= 11%, Lag= 2.5 min

Discarded = 0.04 cfs @ 12.13 hrs, Volume= 0.027 af Primary = 1.62 cfs @ 12.13 hrs, Volume= 0.133 af

Routed to Pond P-2: Infiltration Basin

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.76' @ 12.13 hrs Surf.Area= 633 sf Storage= 304 cf

Plug-Flow detention time= 6.5 min calculated for 0.159 af (100% of inflow)

Center-of-Mass det. time= 6.6 min (763.5 - 757.0)

Volume	Inve	ert Avail.Sto	orage Storage I	Description	
#1	123.0	00' 4	72 cf Custom	Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
123.0	00	165	0	0	
124.0	00	779	472	472	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	123.00'	12.0" Round	Culvert	
			Inlet / Outlet In n= 0.013 Corr	rvert= 123.00' / rugated PE, sm	nform to fill, Ke= 0.700 122.50' S= 0.0072 '/' Cc= 0.900 ooth interior, Flow Area= 0.79 sf
#2	Discarde	ed 123.00'	2.410 in/hr Ex	filtration over	Surface area

Discarded OutFlow Max=0.03 cfs @ 12.13 hrs HW=123.75' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=1.59 cfs @ 12.13 hrs HW=123.75' TW=122.74' (Dynamic Tailwater) 1=Culvert (Barrel Controls 1.59 cfs @ 3.48 fps)

Summary for Pond P-2: Infiltration Basin

Inflow Area = 0.570 ac, 32.04% Impervious, Inflow Depth = 3.95" for 100-Year event

Inflow = 2.19 cfs @ 12.12 hrs, Volume= 0.187 af

Outflow = 0.18 cfs @ 13.37 hrs, Volume= 0.187 af, Atten= 92%, Lag= 75.3 min

Discarded = $0.18 \text{ cfs } \boxed{0}$ 13.37 hrs, Volume= 0.187 afPrimary = $0.00 \text{ cfs } \boxed{0}$ 0.00 hrs, Volume= 0.000 af

Routed to Link DP-2: East Low Point

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 123.31' @ 13.37 hrs Surf.Area= 3,283 sf Storage= 3,415 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 171.8 min (942.3 - 770.5)

Type III 24-hr 100-Year Rainfall=8.27"

Millis Well 3 Proposed

Prepared by Kleinfelder

Printed 10/25/2023

HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 33

Volume	Invert	Avail.Sto	rage Stora	Storage Description				
#1	122.00	5,93	37 cf Cus	cf Custom Stage Data (Prismatic)Listed below (Recalc)				
Elevatio		urf.Area (sq-ft)	Inc.Store					
122.0	0	1,944	(0				
124.0	0	3,993	5,937	5,937				
Device	Routing	Invert	Outlet Dev	vices				
#1	Primary	123.99'	15.0' long	Sharp-Crested R	ectangular Weir 2 End Contraction(s)			
#2	Discarded	122.00'						

Discarded OutFlow Max=0.18 cfs @ 13.37 hrs HW=123.31' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.18 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=122.00' TW=0.00' (Dynamic Tailwater) 1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DP-1: West Wetlands

Inflow Area = 0.271 ac, 4.58% Impervious, Inflow Depth = 5.19" for 100-Year event Inflow = 1.38 cfs @ 12.09 hrs, Volume= 0.117 af Primary = 1.38 cfs @ 12.09 hrs, Volume= 0.117 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: East Low Point

Inflow Area = 0.743 ac, 24.58% Impervious, Inflow Depth = 0.15" for 100-Year event Inflow = 0.05 cfs @ 12.34 hrs, Volume= 0.009 af Primary = 0.05 cfs @ 12.34 hrs, Volume= 0.009 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Appendix D Stormwater Operation and Maintenance Plan

STORMWATER OPERATION AND MAINTANENCE PLAN (O&M)

Owner/

Operator: Town of Millis

Public Works/ Highway Department

900 Main Street, Room 204

Millis, MA 02054

Prepared by: Kleinfelder

1 Beacon Street, Suite 8100

Boston, MA 02118

The following operation and maintenance practices will be performed on the proposed stormwater system by the Owner (Town of Millis).

Table OM-1 Summary of Stormwater System Operation & Maintenance Tasks Listed By Item

T-:	_	1
Item	Frequency	What to do
location on site		
Infiltration Basin	1 st & 2 nd Year Post	Inspections should focus on:
	Construction	•
	Every 6 months, and	Checking the infiltration basin surface for
	after a major storm	standing water or accumulated sediments.
	Inspection frequency	Checking the sedimentation chamber or
	can be reduced to	forebay for sediment accumulation, trash, and
	annual following 2 nd	debris.
	year post- construction	Inspect to be contain the addimentation
		Inspect to be certain the sedimentation
	monitoring.	forebay drains within 24 to 72 hrs.
		Checking inlets, outlets, and overflow
		spillway for blockage, structural integrity, and
		evidence of erosion.
		Removal of decaying vegetation, litter, and debris
		ucons.
Paved surfaces	Every Six Months or	Sweep and remove sediment from paved
	as needed	wearing surfaces at the site.

Table OM-1 – Continued

Riprap Apron at Pressure Relief Outlet and Overflow Weir	Every Six Months, and after major storms	Inspect apron for excessive sediment accumulation, eroding slopes, rilling or gullying, repair and clean as necessary.		
	Once every 4 years	The apron should be cleaned of vegetation.		
Rip rap aprons	Annually, and after major storms	Inspect aprons after major storm events or at a minimum annually. Repair as necessary.		
At pipe outlets	Annually	Cleaning and remove debris from apron. Repair as necessary.		
Water Conveyance	Semi-annually, and	Inspect swales after major storm event. Clean		
Swales	after major storms	debris, and repair as necessary		
	Annually	Cleaning and remove debris from swales.		
		Repair as necessary.		

Table OM-2 Annual Checklist of Stormwater System Operation & Maintenance Tasks Listed By Frequency.

Frequency	Item location on site	What to do	Date completed	Notes
Every Six Months	Paved surfaces	Sweep and remove sediment from paved surfaces on a semi-annual basis.		
	Riprap Aprons at Pressure Relief Outlet, Drain Outlet, and Overflow Weir	Inspect riprap aprons and Overflow Weir for excessive sediment accumulation, eroding slopes, rilling or gullying, repair and clean as necessary		
	Water Conveyance Swale	Inspect and remove all accumulated sediment and debris.		

♦♦♦ These inspections should also be performed after all major storms (more than 3.5 inches of rain in a 24-hour period).

Table OM-2 - Continued

Frequency	Item location on	What to do	Date completed	Notes
Every six months	Infiltration Basin	1st & 2nd Year Post Construction Every 6 months, and after a major storm Inspection frequency can be reduced to annual following 1st and 2nd year post- construction monitoring. Remove any accumulated sediment deposits. Use light equipment to remove top layer without compacting underlying area. Mow the area around the detention basin. Remove all clippings after mowing.		Inspections should focus on: Checking the detention basin surface for standing water and accumulated sediments. Checking the sedimentation chamber or forebay for sediment accumulation, trash, and debris. Inspect to be certain the sedimentation forebay drains within 24 to 72 hrs. Checking inlets, outlets, and overflow spillway for blockage, structural integrity, and evidence of erosion. Removal of decaying vegetation, litter, and debris.

♦ ♦ ♦ These inspections should also be performed after all major storms (more than 3.5 inches of rain in a 24-hour period).

STORMWATER MANAGEMENT LONG TERM POLLUTION PREVENTION PLAN (LTPPP)

Owner/

Operators: Town of Millis Public Works/Highway Department

900 Main Street, Room 204

Millis, MA 02054

Prepared by: Kleinfelder

1 Beacon Street, Suite 8100

Boston, MA 02118

A. MATERIALS MANAGEMENT PRACTICES

The following are the material management practices that will be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff. The Owner and Operator will be responsible for ensuring that these procedures are followed:

1. Good Housekeeping

The following good housekeeping practices will be followed onsite:

- a) An effort will be made to store only enough products required to do the job.
- b) All materials stored onsite will be stored in a neat, orderly manner and, if possible, under a roof or in a containment area. At a minimum, all containers will be stored with their lids on when not in use. Drip pans shall be provided under all dispensers.
- c) Products will be kept in their original containers with the original manufacturer's label in legible condition.
- d) Substances will not be mixed with one another unless recommended by the manufacturer.
- e) Whenever possible, all of a product will be used up before disposing of the container.
- f) Manufacturer's recommendations for proper use and disposal will be followed.
- g) The Operator will be responsible for daily inspections for windblown litter and to ensure proper use and disposal of materials. Collection of all windblown litter will be deposited in an appropriate solid waste container.
- h) The Operator will be responsible for periodic street sweeping on an as need basis for all paved wearing surfaces on site. At a minimum sweeping shall be performed on a quarterly basis.

2. Hazardous Substances

These practices will be used to reduce the risks associated with Hazardous Substances. Material Safety Data Sheets (MSDS's) for each product with hazardous properties that is used at the Site will be obtained and used for the proper management of potential wastes that may result from these products. An MSDS will be posted in the immediate area where such product is stored and/or used and another copy of each MSDS will be maintained in the operations office at the Site. Each employee who must handle a Hazardous Substance will be instructed on the use of MSDS sheets for the product he/she is using, particularly regarding spill control techniques.

- a) Products will be kept in original containers with the original labels in legible condition.
- b) Original labels and MSDS's will be procured and used for each product.
- c) If surplus product must be disposed manufacturer's and local/state/federal required methods for proper disposal must be followed.

3. Hazardous Waste

It is imperative that all Hazardous Waste be properly identified and handled in accordance with all applicable Hazardous Waste Standards, including the storage, transport and disposal of the Hazardous Wastes. There are significant penalties for the improper handling of Hazardous Wastes. It is important that the Owner/Operator seeks appropriate assistance in making the determination of whether a substance or material is a Hazardous Waste. For example, Hazardous Waste may include certain Hazardous Substances, as well as pesticides, paints, paint solvents, cleaning solvents, pesticides, contaminated soils, and other materials, substances or chemicals that have been discarded (or are to be discarded) as being out-of-date, contaminated, or otherwise unusable, and can include the containers for those substances; other materials and substances can also be or become Hazardous Wastes, however. The Owner/Operator is also responsible for ensuring that all site personnel are instructed as to these Hazardous Waste requirements and also that the requirements are being followed.

4. Product Specific Practices

The following product specific practices will be followed on the site:

Petroleum Products

All onsite vehicles will be monitored for leaks and receive regular preventative maintenance to reduce the chance of leakage. Petroleum products will be stored in tightly sealed containers which are clearly labeled. Drip pans shall be provided for all dispensers. Any asphalt substances used onsite will be applied according to the manufacturer's recommendations.

Fertilizers

Fertilizers will be applied only in the minimum amounts recommended by the manufacturer. Fertilizer will not be stored on-site on a long-term basis. All temporary storage of fertilizer will be in a covered container. The contents of any partially used bags of fertilizer will be transferred to a sealable plastic bin to avoid spills.

Paints, Paint Solvents, and Cleaning Solvents.

All containers will be tightly sealed and stored when not in use. Excess paint and solvents will not be discharged to the storm sewer system but will be properly disposed of according to manufacturer's instructions or federal, state, and local regulations.

5. Solid Wastes

All waste materials will be collected and stored in a covered or enclosed containers and/or securely contained metal dumpsters or compactors. The containers will comply with all local and state solid waste management regulations.

B. SPILL PREVENTION

The Owner will train all personnel in the proper handling and cleanup of spilled Hazardous Substances or Oil. No spilled Hazardous Substances or Oil will be allowed to come in contact with stormwater discharges. If such contact occurs, the storm water discharge will be contained on site until appropriate measures in compliance with state and federal regulations are taken to dispose of such contaminated stormwater. It shall be the responsibility of the Owner to be properly trained, and to train all personnel in spill prevention and clean up procedures.

In order to prevent or minimize the potential for a spill of Hazardous Substances or Oil to come into contact with stormwater, the following steps will be implemented:

- a) All Hazardous Substances or Oil (such as pesticides, petroleum products, fertilizers, detergents, construction chemicals, acids, paints, paint solvents, and cleaning solvents, etc.) will be stored in a secure location, with their lids on, preferably under cover, when not in use.
- b) The minimum practical quantity of all such materials will be kept at the site.
- c) A spill control and containment kit (containing, for example, absorbent materials, acid neutralizing powder, brooms, dust pans, mops, rags, gloves, goggles, plastic and metal trash containers, etc.) will be provided at the storage site.
- d) Manufacturer's recommended methods for spill cleanup will be clearly posted and site personnel will be trained regarding these procedures and the location of the information and cleanup supplies.
- e) It is the Operators responsibility to ensure that all Hazardous Waste discovered or generated at the site is disposed of properly by a licensed hazardous material disposal company. The Operator is responsible for not exceeding Hazardous Waste storage requirements mandated by the EPA or state and local authority.

C. SNOW MANAGEMENT

Snow management will be performed by the Millis Public Works/Highway Department. Snow will be placed and mounded on the side of River Road, as necessary. Melting snow will be allowed to percolate through the vegetated surface. In the spring, when all the snow has melted, all accumulated sediment, and debris remaining shall be cleaned and removed from the site.

Appendix E Water Quality Calculations Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 1

Stage-Area-Storage for Pond P-1: Forebay

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	
123.00	165	0	123.52	484	169	
123.01	171	2	123.53	490	174	
123.02	177	3	123.54	497	179	
123.03	183	5	123.55	503	184	
123.04	190	7	123.56	509	189	
123.05	196	9	123.57	515	194	
123.06	202	11	123.58	521	199	
123.07	208	13	123.59	527	204	
123.08	214	15	123.60	533	210	
123.09	220	17	123.61	540	215	
123.10	226	20	123.62	546	220	
123.11	233	22	123.63	552	226	
123.12	239	24	123.64	558	231	
123.13	245	27	123.65	564	237	
123.14	251	29	123.66	570	243	
123.15	257	32	123.67	576	248	
123.16	263	34	123.68	583	254	
123.17	269	37	123.69	589	260	
123.18	276	40	123.70	595	266	
123.19	282	42	123.71	601	272	
123.20	288	45	123.72	607	278	
123.21	294	48	123.73	613	284	
123.22	300	51	123.74	619	290	
123.23	306	54	123.75	626	296	
123.24	312	57	123.76	632	303	
123.25	319	60	123.77	638	309	
123.26	325	64	123.78	644	315	
123.27	331 337	67 70	123.79	650	322	WQV requirement of
123.28 123.29	343	70 74	123.80 123.81	656 662	328 335	•
123.29	343 349	77	123.82	668	342	655 cf storage is met
123.31	355	81	123.83	675	348	
123.31	361	84	123.84	681	355	
123.33	368	88	123.85	687	362	
123.34	374	92	123.86	693	369	
123.35	380	95	123.87	699	376	
123.36	386	99	123.88	705	383	
123.37	392	103	123.89	711	390	
123.38	398	107	123.90	718	397	
123.39	404	111	123.91	724	404	
123.40	411	115	123.92	730	412	
123.41	417	119	123.93	736	419	
123.42	423	123	123.94	742	426	
123.43	429	128	123.95	748	434	
123.44	435	132	123.96	754	441	
123.45	441	136	123.97	761	449	
123.46	447	141	123.98	767	457	
123.47	454	145	123.99	773	464	
123.48	460	150	124.00	779	472	
123.49	466	155				
123.50	472	159				
123.51	478	164				

Prepared by Kleinfelder
HydroCAD® 10.20-2f s/n 00759 © 2022 HydroCAD Software Solutions LLC

Page 2

Stage-Area-Storage for Pond P-2: Infiltration Basin

Elevation	Curfoso	Storago	Lovetion	Surface	Storogo
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
122.00	1,944	0	122.52	2,477	1,149
122.01	1,954	19	122.53	2,487	1,174
122.02	1,964	39	122.54	2,497	1,199
122.03	1,975	59	122.55	2,507	1,224
122.04	1,985	79	122.56	2,518	1,249
122.05	1,995	98	122.57	2,528	1,275
122.06	2,005	118	122.58	2,538	1,300
122.07	2,016	139	122.59	2,548	1,325
122.08	2,026	159	122.60	2,559	1,351
122.09	2,036	179	122.61	2,569	1,376
122.10 122.11	2,046 2,057	200 220	122.62 122.63	2,579	1,402 1,428
122.11	2,057	241	122.63	2,589 2,600	1,426 1,454
122.12	2,077	261	122.65	2,610	1,480
122.14	2,087	282	122.66	2,620	1,506
122.15	2,098	303	122.67	2,630	1,532
122.16	2,108	324	122.68	2,641	1,559
122.17	2,118	345	122.69	2,651	1,585
122.18	2,128	367	122.70	2,661	1,612
122.19	2,139	388	122.71	2,671	1,638
122.20	2,149	409	122.72	2,682	1,665
122.21	2,159	431	122.73	2,692	1,692
122.22 122.23	2,169 2,180	452 474	122.74 122.75	2,702 2,712	1,719 1,746
122.24	2,180	496	122.76	2,723	1,740
122.25	2,200	518	122.77	2,733	1,801
122.26	2,210	540	122.78	2,743	1,828
122.27	2,221	562	122.79	2,753	1,855
122.28	2,231	584	122.80	2,764	1,883
122.29	2,241	607	122.81	2,774	1,911
122.30	2,251	629	122.82	2,784	1,939
122.31	2,262	652	122.83	2,794	1,966
122.32	2,272	675	122.84	2,805	1,994
122.33 122.34	2,282	697	122.85	2,815	2,023
122.34	2,292 2,303	720 743	122.86 122.87	2,825 2,835	2,051 2,079
122.36	2,313	745 766	122.88	2,846	2,107
122.37	2,323	789	122.89	2,856	2,136
122.38	2,333	813	122.90	2,866	2,165
122.39	2,344	836	122.91	2,876	2,193
122.40	2,354	860	122.92	2,887	2,222
122.41	2,364	883	122.93	2,897	2,251
122.42	2,374	907	122.94	2,907	2,280
122.43	2,385	931	122.95	2,917	2,309
122.44	2,395	955	122.96	2,928	2,338
122.45 122.46	2,405 2,415	979 1,003	122.97 122.98	2,938 2,948	2,368 2,397
122.47	2,413	1,027	122.99	2,958	2,427
122.48	2,436	1,051	123.00	2,969	2,456
122.49	2,446	1,076	123.01	2,979	2,486
122.50	2,456	1,100	123.02	2,989	2,516
122.51	2,466	1,125	123.03	2,999	2,546
			I		

Page 3

Stage-Area-Storage for Pond P-2: Infiltration Basin (continued)

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
123.04	3,009	2,576	123.56	3,542	4,279
123.05	3,020	2,606	123.57	3,552	4,315
123.06	3,030	2,636	123.58	3,563	4,350
123.07	3,040	2,667	123.59	3,573	4,386
123.08	3,050	2,697	123.60	3,583	4,422
123.09	3,061	2,728	123.61	3,593	4,458
123.10	3,071	2,758	123.62	3,604	4,494
123.11	3,081	2,789	123.63	3,614	4,530
123.12	3,091	2,820	123.64	3,624	4,566
123.13	3,102	2,851	123.65	3,634	4,602
123.14	3,112	2,882	123.66	3,645	4,639
123.15	3,122	2,913	123.67	3,655	4,675
123.16	3,132	2,944	123.68	3,665	4,712
123.17	3,143	2,976	123.69	3,675	4,748
123.18	3,153	3,007	123.70	3,686	4,785
123.19	3,163	3,039	123.71	3,696	4,822
123.20	3,173	3,070	123.72	3,706	4,859
123.21	3,184	3,102	123.73	3,716	4,896
123.22	3,194	3,134	123.74	3,727	4,933
123.23	3,204	3,166	123.75	3,737	4,971
123.24	3,214	3,198	123.76	3,747	5,008
123.25	3,225	3,230	123.77	3,757	5,046
123.26	3,235	3,263	123.78	3,768	5,083
123.27	3,245	3,295	123.79	3,778	5,121
123.28	3,255	3,328	123.80	3,788	5,159
123.29	3,266	3,360	123.81	3,798	5,197
123.30	3,276	3,393	123.82	3,809	5,235
123.31	3,286	3,426	123.83	3,819	5,273
123.32	3,296	3,459	123.84	3,829	5,311
123.33	3,307	3,492	123.85	3,839	5,350
123.34	3,317	3,525	123.86	3,850	5,388
123.35	3,327	3,558	123.87	3,860	5,427
123.36	3,337	3,591	123.88	3,870	5,465
123.37	3,348	3,625	123.89	3,880	5,504
123.38	3,358	3,658	123.90	3,891	5,543
123.39	3,368	3,692	123.91	3,901	5,582
123.40	3,378	3,726	123.92	3,911	5,621
123.41	3,389	3,759	123.93	3,921	5,660
123.42	3,399	3,793	123.94	3,932	5,699
123.43	3,409	3,827	123.95	3,942	5,739
123.44	3,419	3,862	123.96	3,952	5,778
123.45	3,430	3,896	123.97	3,962	5,818
123.46	3,440	3,930	123.98	3,973	5,857
123.47	3,450	3,965	123.99	3,983	5,897
123.48	3,460	3,999	124.00	3,993	5,937
123.49	3,471	4,034			
123.50	3,481	4,069			
123.51	3,491	4,103	Elevatio	n 123.50 is th	ie top
123.52	3,501	4,138	elevation	n of the overfl	ow
123.53	3,511	4,173		. Water stored	
123.54	3,522	4,209			
123.55	3,532	4,244	eievation	n will be infiltr	aieu.

INSTRUCTIONS:

Version 1, Automated: Mar. 4, 2008

- 1. In BMP Column, click on Blue Cell to Activate Drop Down Menu
- 2. Select BMP from Drop Down Menu
- 3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Location: Village Street Millis, MA

	В	C	D Starting TSS	E	F
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (C*D)	Remaining Load (D-E)
neet	Sediment Forebay	0.25	1.00	0.25	0.75
Removal on Worksheet	Infiltration Basin	0.80	0.75	0.60	0.15
Rem on W		0.00	0.15	0.00	0.15
TSS ReCalculation		0.00	0.15	0.00	0.15
Cal		0.00	0.15	0.00	0.15
		Total T	SS Removal =	85%	Separate Form Needs to be Completed for Each Outlet or BMP Train

Project: Millis Well 3 PFAS Treatment Facility

Prepared By: MPS

*Equals remaining load from previous BMP (E)

which enters the BMP

Non-automated TSS Calculation Sheet

Must be used if Promits

TO THE Promits To The Promits To T must be used if Proprietary BMP Proposed 1. From MassDEP Stormwater Handbook Vol. 1

Appendix F

Project Data: NOAA Rainfall and NRCS Web Soil Survey

NOAA Atlas 14, Volume 10, Version 3 Location name: Millis, Massachusetts, USA* Latitude: 42.1662°, Longitude: -71.3406° Elevation: 122 ft**

* source: ESRI Maps ** source: USGS

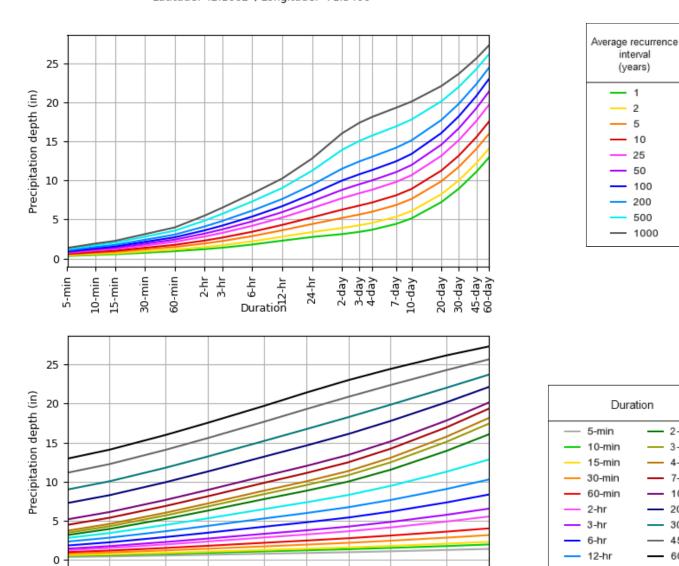
POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

	S-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration	1	2	5	Average 10	25	50	ears)	200	500	1000
5-min	0.323	0.392	0.505	0.599	0.728 (0.541-0.987)	0.825	0.927	1.04	1.21	1.36
10-min	0.458	0.556	0.716 (0.551-0.920)	0.849	1.03 (0.767-1.40)	1.17	1.31	1.48	1.72	1.92 (1.22-3.00)
15-min	0.539	0.654 (0.505-0.837)	0.842	0.999 (0.765-1.29)	1.21 (0.902-1.65)	1.38 (1.00-1.91)	1.54 (1.10-2.23)	1.74 (1.17-2.57)	2.02 (1.31-3.10)	2.26 (1.43-3.53)
30-min	0.738 (0.571-0.944)	0.898 (0.694-1.15)	1.16 (0.892-1.49)	1.38 (1.06-1.78)	1.67 (1.24-2.27)	1.90 (1.38-2.63)	2.13 (1.51-3.08)	2.40 (1.61-3.55)	2.80 (1.81-4.28)	3.12 (1.98-4.88)
60-min	0.937 (0.725-1.20)	1.14 (0.882-1.46)	1.48 (1.14-1.90)	1.75 (1.34-2.27)	2.13 (1.59-2.89)	2.42 (1.76-3.36)	2.72 (1.93-3.93)	3.07 (2.06-4.53)	3.57 (2.31-5.47)	3.98 (2.52-6.23)
2-hr	1.20 (0.931-1.52)	1.47 (1.14-1.87)	1.92 (1.49-2.46)	2.30 (1.77-2.96)	2.82 (2.11-3.81)	3.20 (2.35-4.43)	3.61 (2.59-5.23)	4.11 (2.77-6.03)	4.86 (3.16-7.40)	5.51 (3.50-8.55)
3-hr	1.38 (1.08-1.75)	1.71 (1.33-2.16)	2.24 (1.74-2.85)	2.68 (2.07-3.42)	3.28 (2.47-4.43)	3.73 (2.75-5.16)	4.22 (3.04-6.09)	4.81 (3.25-7.03)	5.73 (3.72-8.67)	6.52 (4.14-10.1)
6-hr	1.79 (1.40-2.25)	2.20 (1.72-2.77)	2.87 (2.24-3.62)	3.43 (2.66-4.35)	4.19 (3.17-5.62)	4.76 (3.53-6.54)	5.38 (3.90-7.72)	6.14 (4.16-8.90)	7.31 (4.77-11.0)	8.33 (5.31-12.8)
12-hr	2.29 (1.81-2.86)	2.79 (2.20-3.49)	3.62 (2.85-4.54)	4.30 (3.37-5.43)	5.25 (3.99-6.97)	5.94 (4.43-8.09)	6.70 (4.88-9.53)	7.62 (5.19-11.0)	9.04 (5.92-13.5)	10.3 (6.56-15.6)
24-hr	2.76 (2.19-3.42)	3.39 (2.69-4.20)	4.42 (3.50-5.51)	5.28 (4.15-6.61)	6.45 (4.93-8.52)	7.32 (5.49-9.91)	8.27 (6.06-11.7)	9.44 (6.45-13.5)	11.3 (7.39-16.6)	12.8 (8.23-19.3)
2-day	3.13 (2.50-3.85)	3.91 (3.13-4.82)	5.20 (4.14-6.43)	6.26 (4.96-7.80)	7.73 (5.95-10.2)	8.80 (6.66-11.9)	9.99 (7.39-14.1)	11.5 (7.88-16.3)	13.9 (9.17-20.4)	16.1 (10.3-24.0)
3-day	3.41 (2.74-4.19)	4.26 (3.42-5.23)	5.64 (4.51-6.96)	6.79 (5.40-8.42)	8.38 (6.47-11.0)	9.53 (7.23-12.8)	10.8 (8.03-15.2)	12.5 (8.55-17.6)	15.1 (9.96-22.1)	17.4 (11.2-25.9)
4-day	3.68 (2.96-4.50)	4.56 (3.66-5.58)	5.99 (4.80-7.36)	7.18 (5.72-8.87)	8.82 (6.82-11.5)	10.0 (7.61-13.4)	11.3 (8.43-15.9)	13.0 (8.97-18.3)	15.8 (10.4-22.9)	18.2 (11.7-26.9)
7-day	4.43 (3.58-5.39)	5.35 (4.32-6.52)	6.86 (5.52-8.38)	8.10 (6.48-9.96)	9.82 (7.62-12.7)	11.1 (8.44-14.7)	12.5 (9.26-17.3)	14.2 (9.81-19.8)	17.0 (11.2-24.5)	19.3 (12.5-28.5)
10-day	5.14 (4.17-6.23)	6.09 (4.93-7.39)	7.63 (6.16-9.30)	8.92 (7.16-10.9)	10.7 (8.31-13.7)	12.0 (9.14-15.8)	13.4 (9.94-18.4)	15.1 (10.5-21.0)	17.8 (11.8-25.6)	20.1 (13.1-29.5)
20-day	7.23 (5.90-8.71)	8.25 (6.72-9.94)	9.91 (8.05-12.0)	11.3 (9.11-13.7)	13.2 (10.3-16.7)	14.6 (11.1-18.9)	16.1 (11.9-21.6)	17.8 (12.4-24.5)	20.2 (13.5-28.7)	22.1 (14.4-32.2)
30-day	8.96 (7.34-10.7)	10.0 (8.21-12.0)	11.8 (9.59-14.2)	13.2 (10.7-16.0)	15.2 (11.9-19.1)	16.7 (12.7-21.4)	18.3 (13.4-24.2)	19.9 (13.9-27.2)	22.0 (14.8-31.2)	23.7 (15.5-34.3)
45-day	11.1 (9.14-13.3)	12.2 (10.0-14.6)	14.1 (11.5-16.9)	15.6 (12.7-18.8)	17.7 (13.8-22.0)	19.3 (14.7-24.5)	20.9 (15.3-27.3)	22.4 (15.7-30.4)	24.3 (16.3-34.2)	25.7 (16.8-37.0)
60-day	12.9 (10.7-15.4)	14.1 (11.6-16.8)	16.0 (13.1-19.1)	17.5 (14.3-21.1)	19.7 (15.4-24.4)	21.4 (16.3-27.0)	23.0 (16.8-29.8)	24.5 (17.2-33.1)	26.2 (17.6-36.7)	27.3 (17.9-39.2)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PDS-based depth-duration-frequency (DDF) curves Latitude: 42.1662°, Longitude: -71.3406°

NOAA Atlas 14, Volume 10, Version 3

5

10

25

Average recurrence interval (years)

50

Created (GMT): Thu Aug 10 21:55:19 2023

500

1000

2-day

3-day

4-day

7-day

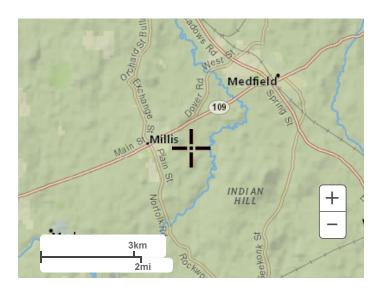
10-day 20-day

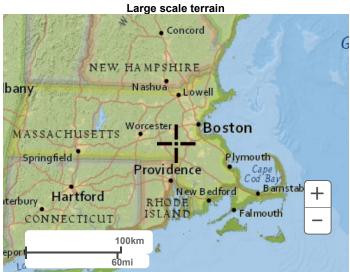
30-day

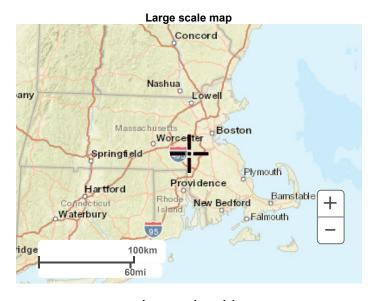
45-day

60-day

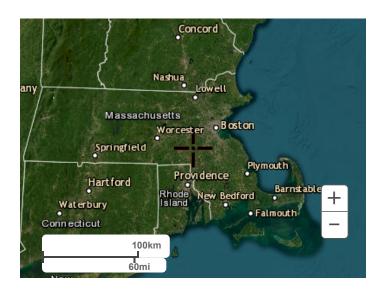
24-hr

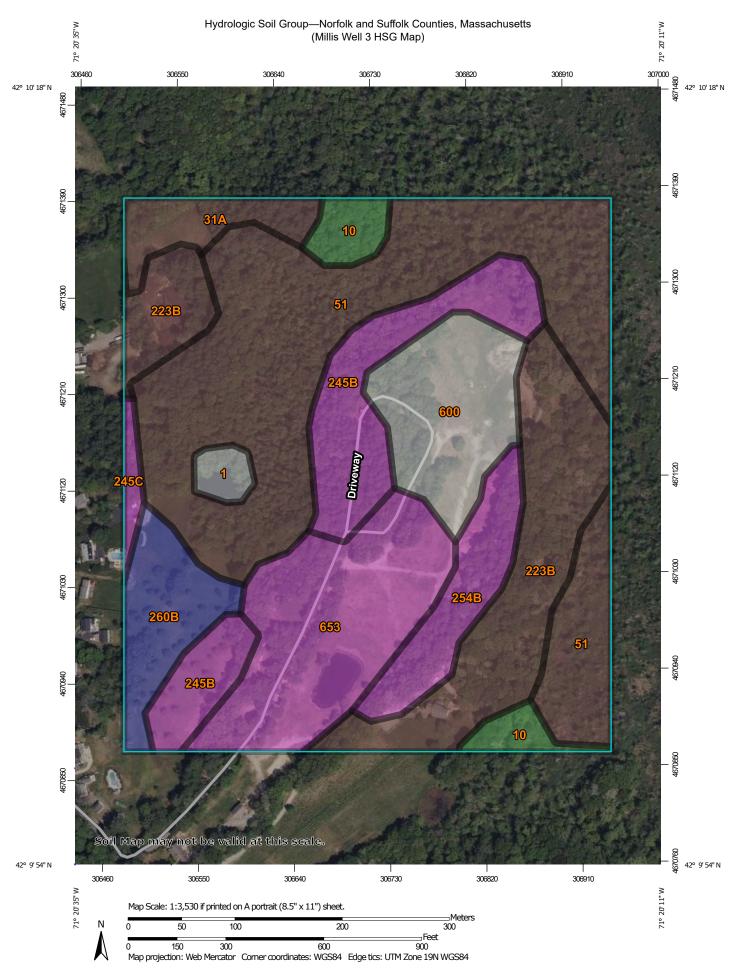

Back to Top


100


200

Maps & aerials


Small scale terrain


Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:25.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 18, Sep 9, 2022 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: May 22, 2022—Jun 5. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1	Water		0.6	1.1%
10	Scarboro and Birdsall soils, 0 to 3 percent slopes	A/D	1.8	3.0%
31A	Walpole sandy loam, 0 to 3 percent slopes	B/D	2.0	3.4%
51	Swansea muck, 0 to 1 percent slopes	,		32.5%
223B	Scio very fine sandy loam, 2 to 5 percent slopes	B/D	9.3	15.9%
245B	Hinckley loamy sand, 3 to 8 percent slopes	А	6.2	10.6%
245C	Hinckley loamy sand, 8 to 15 percent slopes	А	0.5	0.9%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	3.1	5.2%
260B	Sudbury fine sandy loam, 2 to 8 percent slopes	В	3.1	5.3%
600	Pits, sand and gravel		4.9	8.5%
653	Udorthents, sandy	Α	8.0	13.7%
Totals for Area of Inter	rest	1	58.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Appendix G Boring Logs

20233667.002A October 2023
© 2023 Kleinfelder www.kleinfelder.com

W USCS]

ΚĒΥ

[KLF GEO LEG1 GRAPHICS

DRILLING METHOD/SAMPLER TYPE GRAPHICS

STANDARD PENETRATION SPLIT SPOON SAMPLER (2 in. (50.8 mm.) outer diameter and 1-3/8 in. (34.9 mm.) inner diameter)

GROUND WATER GRAPHICS

- ∇ WATER LEVEL (level where first observed)
- WATER LEVEL (level after stabilizing period)
- \mathbf{I} WATER LEVEL (additional levels after exploration)
- \mathbb{A}

OBSERVED SEEPAGE

NOTES

- The report and graphics key are an integral part of these logs. All data and interpretations in this log are subject to the explanations and limitations stated in the report.
- Solid lines separating strata on the logs represent approximate boundaries only, dashed lines are inferred or extrapolated boundaries. Actual transitions may be gradual or differ from those represented.
- No warranty is provided as to the continuity of soil or rock conditions between individual sample locations.
- Logs represent general soil or rock conditions observed at the point of exploration on the date indicated.
- In general, Unified Soil Classification System (ASTM D2488/D2487) designations presented on the logs were based on visual classification in the field and were modified where appropriate based on gradation and index property testing.
- Fine grained soils that plot within the hatched area on the Plasticity Chart, and coarse grained soils with between 5% and 12% passing the No. 200 sieve require dual USCS symbols, ie., CL-ML, GW-GM, GP-GM, GW-GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM.
- If sampler is not able to be driven at least 6 inches then 50/X indicates number of blows required to drive the identified sampler X inches with a 140 pound hammer falling 30 inches.

ABBREVIATIONS WOH - Weight of Hammer WOR - Weight of Rod

REFERENCES

1. American Society for Materials and Testing (ASTM), 2011, ASTM D2487: Classification of Soils for Engineering Purposes (Unified Soil Classification System).

UNIFIED SOIL CLASSIFICATION SYSTEM¹

UNIF	IED (SOIL CLAS	55IFIC	JATION 3	TSTEIVI									
	Sieve)	CLEAN GRAVEL WITH		GW	WELL-GRADED GRAVEL, WELL-GRADED GRAVEL WITH SAND									
	No. 4 Sie	<5% FINES		GP	POORLY GRADED GRAVEL, POORLY GRADED GRAVEL WITH SAND									
	ained on I			GW-GM	WELL-GRADED GRAVEL WITH SILT, WELL-GRADED GRAVEL WITH SILT AND SAND									
	coarse fraction retained on	GRAVELS WITH		GW-GC	WELL-GRADED GRAVEL WITH CLAY (OR SILTY CLAY), WELL-GRADED GRAVEL WITH CLAY AND SAND (OR SILT CLAY AND SAND)									
	coarse fra	5% TO 12% FINES		GP-GM	POORLY GRADED GRAVEL WITH SILT, POORLY GRADED GRAVEL WITH SILT AND SAND									
200 Sieve)	50% of			GP-GC	POORLY GRADED GRAVEL WITH CLAY (OR SILTY CLAY), POORLY GRADED GRAVEL WITH CLAY AND (OR SILTY CLAY AND SAND)									
	S (More than			GM	SILTY GRAVEL, SILTY GRAVEL WITH SAND									
retained o	GRAVELS (GRAVELS WITH > 12% FINES		GC	CLAYEY GRAVEL, CLAYEY GRAVEL WITH SAND									
han 50%	<u>15</u>			GC-GM	SILTY, CLAYEY GRAVEL SILTY, CLAYEY GRAVEL WITH SAND									
COARSE GRAINED SOILS (More than 50% retained on No.		CLEAN SANDS	••••	sw	WELL-GRADED SAND, WELL-GRADED SAND WITH GRAVEL									
ED SOIL	ED SOIL; 4 Sieve)	WITH <5% FINES		SP	POORLY GRADED SAND, POORLY GRADED SAND WITH GRAVEL									
E GRAIN	s the No.			SW-SM	WELL-GRADED SAND WITH SILT, WELL-GRADED SAND WITH SILT AND GRAVEL									
COARS	ion passe	SANDS WITH 5% TO		sw-sc	WELL-GRADED SAND WITH CLAY (OR SILTY CLAY), WELL-GRADED SAND WITH CLAY AND GRAVEL (OR SILTY CLAY AND GRAVEL)									
	arse fract	12% FINES		SP-SM	POORLY GRADED SAND WITH SILT, POORLY GRADED SAND WITH SILT AND GRAVEL									
	more of coarse fraction passes			SP-SC	POORLY GRADED SAND WITH CLAY, POORLY GRADED SAND WITH CLAY AND GRAVEL (OR SILTY CLAY AND GRAVEL)									
	ō								044100				SM	SILTY SAND, SILTY SAND WITH GRAVEL
	SANDS (50%	SANDS WITH > 12% FINES	1>	sc	CLAYEY SAND, CLAYEY SAND WITH GRAVEL									
				SC-SM	SILTY, CLAYEY SAND, SILTY, CLAYEY SAND WITH GRAVEL									
				ML	SILT, SILT WITH SAND, SILT WITH GRAVEL									
	(e)	SILTS AND		CL	LEAN CLAY, LEAN CLAY WITH SAND, LEAN CLAY WITH GRAVEL									
FINE GRAINED SOILS	o sie	(Liquid L less thar		CL-N	IL SILTY CLAY, SILTY CLAY WITH SAND, SILTY CLAY WITH GRAVEL									
AINE	#20			OL	ORGANIC CLAY, ORGANIC CLAY WITH SAND, ORGANIC CLAY WITH GRAVEL, ORGANIC SILT, ORGANIC SILT WITH SAND, ORGANIC SILT WITH GRAVEL									
GR	S S	SILTS AND	CI AVS	MH	ELASTIC SILT. ELASTIC SILT WITH SAND, ELASTIC SILT WITH GRAVEL									
FINE	₽Ę	(Liquid L	.imit	CH										
				₩ 0+	Charling diet, Charling diet With Graph, Charling diet With Graph									
		E MATERIA ON THIS			ON THE LOG TO DEFINE A GRAPHIC THAT MAY NOT BE									

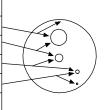
PROVIDED ON THIS LEGEND.

PROJECT NO .: 20233667.001A

DRAWN BY: AD

CHECKED BY

DATE: 3/17/2023


MR

GRAPHICS KEY

Well 3 PFAS Piloting and Preliminary Design 25 Birch Street Millis, MA

GRAIN SIZE
DESCRIPTIO
Boulders
Cobbles

	_			
DESCRIPTION SIEVE SIZE		SIEVE SIZE	GRAIN SIZE	APPROXIMATE SIZE
Boulders	\$	>12 in. (304.8 mm.)	>12 in. (304.8 mm.)	Larger than basketball-sized
Cobbles 3 - 12 in. (76.2 - 304.8 mm		3 - 12 in. (76.2 - 304.8 mm.)	3 - 12 in. (76.2 - 304.8 mm.)	Fist-sized to basketball-sized
C	coarse	3/4 -3 in. (19 - 76.2 mm.)	3/4 -3 in. (19 - 76.2 mm.)	Thumb-sized to fist-sized
Gravel	fine	#4 - 3/4 in. (#4 - 19 mm.)	0.19 - 0.75 in. (4.8 - 19 mm.)	Pea-sized to thumb-sized
	coarse	#10 - #4	0.079 - 0.19 in. (2 - 4.9 mm.)	Rock salt-sized to pea-sized
Sand	medium	#40 - #10	0.017 - 0.079 in. (0.43 - 2 mm.)	Sugar-sized to rock salt-sized
	fine	#200 - #40	0.0029 - 0.017 in. (0.07 - 0.43 mm.)	Flour-sized to sugar-sized
Fines		Passing #200	<0.0029 in. (<0.07 mm.)	Flour-sized and smaller
•				

SECONDARY CONSTITUENT

	AMC	UNT
Term of Use	Secondary Constituent is Fine Grained	Secondary Constituent is Coarse Grained
Trace	<5%	<15%
With	≥5 to <15%	≥15 to <30%
Modifier	≥15%	≥30%

MOISTURE CONTENT

DESCRIPTION	FIELD TEST
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually soil is below water table

CEMENTATION

DESCRIPTION	FIELD TEST
Weakly	Crumbles or breaks with handling or slight finger pressure
Moderately	Crumbles or breaks with considerable finger pressure
Strongly	Will not crumble or break with finger pressure

CONSISTENCY - FINE-GRAINED SOIL

CONOICTENC	CONSISTENCY - TIME-SIVAINED SOIL		
CONSISTENCY	TCP VALUES	FIELD IDENTIFICATION	
Very Soft	0 - 8	Core (height twice diameter) sags under own weight	
Soft	8 - 20	Core can be pinched or imprinted easilty with finger	
Stiff	20 - 40	Core can be imprinted with considerable pressure	
Very Stiff	40 - 80	Core can be imprinted only slightly with fingers	
Hard	80 - 5 in./100	Core cannot be imprinted with fingers but can be penetrated with pencil	
Very Hard	0 in 5 in. /100	Core cannot be penetrated with pencil	

REACTION WITH HYDROCHLORIC ACID

DESCRIPTION	FIELD TEST
None	No visible reaction
Weak	Some reaction, with bubbles forming slowly
Strong	Violent reaction, with bubbles forming immediately

APPARENT / RELATIVE DENSITY - COARSE-GRAINED SOIL

APPARENT DENSITY	TCP VALUES
Very Loose	0 - 8
Loose	8 - 20
Slightly Compact	20 - 40
Compact	40 - 80
Dense	80 - 5 in. /100
Very Dense	0 in. / 5 in. 100

PLASTICITY

DESCRIPTION	LL	FIELD TEST
Non-plastic	NP	A 1/8-in. (3 mm.) thread cannot be rolled at any water content.
Low (L)	< 30	The thread can barely be rolled and the lump or thread cannot be formed when drier than the plastic limit.
Medium (M)	30 - 50	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump or thread crumbles when drier than the plastic limit.
High (H)	> 50	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump or thread can be formed without crumbling when drier than the plastic limit.

STRUCTURE

DESCRIPTION	CRITERIA
Stratified	Alternating layers of varying material or color with layers at least 1/4-in. thick, note thickness.
Laminated	Alternating layers of varying material or color with the layer less than 1/4-in. thick, note thickness.
Fissured	Breaks along definite planes of fracture with little resistance to fracturing.
Slickensided	Fracture planes appear polished or glossy, sometimes striated.
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown.
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay; note thickness.

ANGULARITY

DESCRIPTION	CRITERIA
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces.
Subangular	Particles are similar to angular description but have rounded edges.
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges.
Rounded	Particles have smoothly curved sides and no edges.

PROJECT NO.: 20233667.001A

CHECKED BY

DRAWN BY: AD

MR

DATE: 3/17/2023

SOIL DESCRIPTION KEY

Well 3 PFAS Piloting and Preliminary Design 25 Birch Street Millis, MA

Date Begin - End: **Drilling Company:** 1/26/2023 **New England Boring Contractors BORING LOG B-W3-101 Drill Crew:** Logged By: A. Darajat M. Misiaszek ВY. Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** Hammer Type - Drop: 140 lb. Auto - 30 in. D-53 04:16 PM Plunge: **Drilling Method:** -90 degrees Drive and Wash with Casing Weather: Cloudy 40s Exploration Diameter: 4 in. I.D. 03/17/2023 FIELD EXPLORATION LABORATORY RESULTS Recovery (NR=No Recovery) Passing #200 (%) Additional Tests/ Remarks Dry Unit Wt. (pcf) Plasticity Index (NP=NonPlastic) PLOTTED: Elevation (feet) Passing #4 (%) Graphical Log Blow Counts(BC)= Uncorr. Blows/6 in. Ground Surface Elevation (ft.): 126.90 Sample Type Water Content (%) Depth (feet) Surface Condition: Bare Earth and Grass Liquid Limit Sample Number USCS Symbol Lithologic Description 6" Topsoil S-1 12" Brown, very loose, fine to coarse SAND, little silt, trace gravel, trace roots (subsoil) -125 Top (A): Brown, fine to coarse SAND, little silt, S-2A BC=WOH 12" trace gravel (subsoil) BC=3 12 Bottom (B): Gray/brown, fine to coarse 123.9 S-2B 8" SAND, some gravel, little silt Gray/brown, very dense, fine to coarse S-3 10 17' 77 BC=4 SAND, some gravel, little silt 42 45 Hard casing penetration from 4.5 to 8 ft bgs. 300 lb hammer was introduced S-4 Gray/brown, very dense, fine to coarse SAND BC=30 10" 29 to drive casing. and GRAVEL, trace silt -120 32 ∇ Brown, dense, fine to coarse SAND and S-5 BC=16 12" 17 GRAVEL, trace silt 17 10 22 OFFICE FILTER: BOSTON -115 Brown, dense, GRAVEL, some fine to coarse S-6 10" 46 12 20 18 SAND, little clayey silt [KLF BORING/TEST PIT SOIL LOG] -110 BC=8 9 Brown/gray, medium dense, fine to coarse S-7 8" SAND and GRAVEL, trace silt 10 GINT LIBRARY 2023.GLB 105 4" GINT TEMPLATE: E:KLF STANDARD Brown, medium dense, fine to coarse SAND, S-8 BC=11 some gravel, trace silt PROJECT NO .: **BORING LOG B-W3-101** 20233667.001A DRAWN BY: EINFELDER AD Well 3 PFAS Piloting and Preliminary Design Bright People. Right Solutions. 25 Birch Street CHECKED BY: MR

DATE:

3/17/2023

PROJECT NUMBER: 20233667.001A Klf_gint_master_2023 gINT FILE:

Millis, MA

Page: 1 of 3

Date Begin - End: 1/26/2023 **Drilling Company:** New England Boring Contractors **BORING LOG B-W3-101 Drill Crew:** Logged By: A. Darajat M. Misiaszek ВY. Hor.-Vert. Datum: NAD83 - NAVD88 **Drilling Equipment:** Hammer Type - Drop: 140 lb. Auto - 30 in. D-53 03/17/2023 04:16 PM Plunge: **Drilling Method:** -90 degrees Drive and Wash with Casing Weather: Cloudy 40s Exploration Diameter: 4 in. I.D. FIELD EXPLORATION LABORATORY RESULTS Recovery (NR=No Recovery) Passing #200 (%) Additional Tests/ Remarks Plasticity Index (NP=NonPlastic) Dry Unit Wt. (pcf) PLOTTED: Elevation (feet) Passing #4 (%) Graphical Log Ground Surface Elevation (ft.): 126.90 Blow Counts(BC)= Uncorr. Blows/6 in. Sample Type Water Content (%) Depth (feet) Surface Condition: Bare Earth and Grass Liquid Limit Sample Number USCS Symbol Lithologic Description S-8 4" 15 (cont. (cont.) -100 Brown, medium dense, fine to coarse SAND S-9 6" and GRAVEL, trace silt 8 30 -95 S-10 BC=8 Gray/brown, medium dense, fine to coarse 7" 91 7.6 SAND, trace gravel, trace silt 35 OFFICE FILTER: BOSTON -90 S-11 Gray/brown, medium dense, fine to coarse BC=7 6" SAND and GRAVEL, trace silt [KLF_BORING/TEST PIT SOIL LOG] -85 BC=6 5 Gray/brown, medium dense, fine to coarse S-12 5" SAND and GRAVEL, trace silt 6 5 GINT TEMPLATE: E:KLF_STANDARD_GINT_LIBRARY_2023.GLB -80 BC=11 6" Gray/brown, medium dense, fine to coarse S-13 53 5.1 SAND and GRAVEL, trace silt PROJECT NO .: **BORING LOG B-W3-101** 20233667.001A DRAWN BY: EINFELDER AD Well 3 PFAS Piloting and Preliminary Design Bright People. Right Solutions. 25 Birch Street CHECKED BY: MR Millis, MA DATE: 3/17/2023

Page: 2 of 3

PROJECT NUMBER: 20233667.001A Klf_gint_master_2023 gINT FILE:

PROJECT NUMBER: 20233667.001A Klf_gint_master_2023 gINT FILE: